No Math for Basic Bode plots.

Ex. 1

\[G = \frac{K}{s^2 + 1} \]

eg \(K = 5 \)

\(\omega = 0.5 \Rightarrow \phi_B \approx 2 \)

Phase(\(\infty \)) \(-50\)

Phase(\(\infty \)) \(-90\)
Ex. \(G(s) = \frac{10}{(2s+1)(0.5s+1)} \)

- \(\omega_{b1} = 0.5 \text{ rad/s} \)
- \(\omega_{b2} = 2 \text{ rad/s} \)

Graphical Addition
Definition: \(\text{dB} = "\text{decibels}" \)

\[x_{\text{dB}} = 20 \log{x} \]
\[G(s) = \frac{j\omega}{s + j\omega} \]

\[|F| = \frac{1}{\omega} \]

\[\log |F| = 0 - \log \omega \]

\[\omega \to \infty \]

\[-\infty < \omega = 0 \]

\[\text{Phase}(\infty) = -90^\circ \]

\[|z(\infty)| \]

\[\text{Phase}(\infty) = -90^\circ \]
Zero
\(z = 2 \)
\(G(s) = 25 + 1 \)

Pole
\(\omega_p \)

-20
+70
The Bode plot of a second order system

The transfer function of a second order system (e.g., RCL circuit with voltage across the capacitor C) as the output is...
So far $10 < \omega < \infty$

$AA \gg t \rightarrow$ open-loop

$F(j\omega)$

let $\phi = -180^\circ$
Error at scanning point:

\(-y(t)\)

\(r(t)\)

\(y(t)\) is inverted

if at \(\phi = -180^\circ\)

\(y(t) > y_{ref}\)

My quiet criterion:

if at \(\phi = -180^\circ\)

\(|F| > 1\), then closed loop is unstable
Gain and Phase Margins

see also Fig 6.33 and 6.34 in book

Gain = 1 |

| F | < 1 \Rightarrow \text{is stable} |

Closed loop

\pm 10 \text{dB or Gain} = 1

Phase Margin

Phase Margin
P-control
Use Bode for compensator design

focus comp better. Example:

\[G(s) = \frac{2}{s(s+4)(s+6)} \]

Compensator with \(\rho/\varepsilon = 10 \)

i.e.

\[\text{Comp} = \frac{s+\varepsilon}{s+p} \cdot \frac{P}{\varepsilon} \text{() \overline{\text{Keps}} \text{ sos gain}} = 1 \]
raise k by 30 dB

I or raise k by 40 dB or 3 times higher

p-control
Bode Example of plant addition, gain adjusted, Plant* Lead

\[\text{new } k = 100 \]

Phase (deg) vs Frequency (rad/sec)