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Solution of Multivariable Optimization with Inequality Constraints by Lagrange Multipliers 

 

Consider this problem: 

Minimize )(xf   where,  x=[x1 x2 …. xn]T 

subject to, mjxg j ,2,10)(   

The g functions are labeled inequality constraints. They mean that only acceptable solutions are those 

satisfying these constraints. 

Another way to think about an optimization problem with inequality constraint is we are trying to find a 

solution within a space bounded by these constraints. 

To start, we need to make distinction between two possibilities for a minimum: 

 Interior: No inequality constraint is active.  

In this case, a minimum is associated with, 0)( *  xf  

 Exterior: One or more inequality constraint is active.  

One possible way to think about this problem is 0)( *  xf but this is point is the 

feasible minimum. 
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We can find a solution to the problem by adding non-negative slack (slackness) variables, yj
2 such that, 

mjyxg jj ,2,10)(
2

  

Slack variables are not known beforehand. 

 

The problem now is transformed into: 

Minimize )(xf   where,  x=[x1 x2 …. xn]T 

subject to, mjyxg jj ,2,10)(
2

  

In this form, the Lagrange multiplier method can be used to solve the above problem by creating this 

function, 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒, 𝐿 = 𝑓(𝑥) + ∑ 𝜆𝑗 (
2

)( jj yxg  )

𝑚

𝑗=1

 

where, 𝜆𝑗 is the Lagrange multiplier. This problem can be solved (necessary conditions). 

𝜕𝐿

𝜕𝑥𝑖
=

𝜕𝑓

𝜕𝑥𝑖
+ ∑ 𝜆𝑗

𝜕𝑔𝑗

𝜕𝑥𝑖

𝑚

𝑗=1

= 0 𝑖 = 1,2, … , 𝑛 

𝜕𝐿

𝜕𝜆𝑗
= (

2
)( jj yxg  ) = 0 𝑗 = 1,2, … , 𝑚 

𝜕𝐿

𝜕𝑦𝑗
= 2𝜆𝑗𝑦𝑗 = 0 𝑗 = 1,2, … , 𝑚 

The total number of equations is n+2m, which can be solved simultaneously to obtain the optimal point. 

The solution will indicate which constraint is active, if any, are associated with the solution. 
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It may be useful to understand the solution a little better.  

 The first set of equations state that the gradient is still zero for the case of an exterior minimum. 

The gradient now combines the original function and the active constraints. 

 The second set of equations ensure that 0)( xg j  

 The third set of equations indicate either yj or j is zero.  

o If j=0, it means that this constraint is inactive. 

o If yj=0, it means that this constraint is active. (gi=0) 

Typically, consider the case when p constraints are active, which means that m-p are inactive. The first 

equation becomes, 

−
𝜕𝑓

𝜕𝑥𝑖
= ∑ 𝜆𝑗

𝜕𝑔𝑗

𝜕𝑥𝑖

𝑚

𝑗=1

𝑖 = 1,2, … , 𝑝 

Or, 

−∇𝑓 = ∑ 𝜆𝑗∇𝑔𝑗      𝑖 = 1,2, … , 𝑝

𝑚

𝑗=1

 

The figure below may help understand constrained optimization. In this case, the global minimum is 

outside feasible range. Remember that at minimum slope is zero. 

   

Global Minimum

)(xf
)(1 xg

)(1 xg )(2 xg

)(2 xg

Unfeasible

Feasible
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Example 2.7: 

Minimize 3)( xxf   

Subject to,  
01x   
02  x  

 
Place the problem in the standard (canonical) 
form: 
 

Minimize 3)( xxf   

Subject to,  
01  x   
02 x  

 
Prepare the solution: 

 23)( xxf   

1)(1  xg    

1)(2  xg  

 
Condition for minimum: 

3𝑥2 + 𝜆1(−1) + 𝜆2(1) = 0 
(1 − 𝑥) + 𝑦1

2 = 0 
(𝑥 − 2) + 𝑦2

2 = 0 
2𝜆1𝑦1 = 0 
2𝜆2𝑦2 = 0 
 

)(xf

)(1 xg

)(1 xg )(2 xg

)(2 xg

 

Here we have to explore several possibilities: 

 1=0 2=0   x=0, which is outside the feasible domain. 

 1≠0 2=0 y1=0  
Equation (2) will result in x=1.  

The first equation means that 1=3  
The function is 1 

 1=0 2≠0 y2=0  
Equation (3) will result in x=2.  

The first equation means that 2=-12  
The function is 8 

 1≠0 2≠0 This case is trivial as both constraints cannot be active in the same time 

 

Homework: 2.61 using the Lagrange Multipliers method. Plot the contour plots and the constraints. 

Relate your solution to this plot. 
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Kuhn-Tucker Optimality Conditions 

Kuhn and Tucker extended the Lagrange’s theory to include classical nonlinear programming problems. 

 
Harold Kuhn (1925-2014), Wikipedia 

 
Albert William Tucker (1905-1995), Wikipedia  

 

Kuhn and Tucker focused on identifying the conditions that when satisfied are related to constrained 
minimum or, 

𝜕𝐿

𝜕𝑥𝑖
=

𝜕𝑓

𝜕𝑥𝑖
+ ∑ 𝜆𝑗

𝜕𝑔𝑗

𝜕𝑥𝑖

𝑚

𝑗=1

= 0 𝑖 = 1,2, … , 𝑛 

j>0    𝑗 ∈ 𝐽1 

The above equations are labeled Kuhn-Tucker conditions.  

These conditions are necessary but not necessary to ensure optimality. They are not however not 

sufficient. 

 

If we limit the discussion to convex programming problems, the conditions become both necessary and 

sufficient. 

𝜕𝐿

𝜕𝑥𝑖
=

𝜕𝑓

𝜕𝑥𝑖
+ ∑ 𝜆𝑗

𝜕𝑔𝑗

𝜕𝑥𝑖

𝑚

𝑗=1

= 0 𝑖 = 1,2, … , 𝑛 

𝜆𝑗𝑔𝑗 = 0 𝑗 = 1,2, … , 𝑚 

𝑔𝑗 ≤ 0 𝑗 = 1,2, … , 𝑚 

𝜆𝑗 ≥ 0 𝑗 = 1,2, … , 𝑚 

 

 

A problem where both the objective 

function and the constraints are 

convex. 

Note: The Hessian matrix of a convex 

function is positive semidefinite. 

https://en.wikipedia.org/wiki/File:Harold_W._Kuhn.jpg
https://en.wikipedia.org/wiki/File:Albert_W._Tucker.gif
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Constraint Qualifications 

We can now that we can solve an optimization problem with equality and inequality constraints as: 

Find x, , and  vectors such that, 

0)()()(

11
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To be more specific, we need to state that, ∇𝑓, ∇𝑔, 𝑎𝑛𝑑 ∇ℎ should be linearly independent. 
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Example 2.8: 

Minimize 2

2

1)( xxxf   

Subject to,   0111  xxg  

  026
2

2

2

12  xxxg  

  06211  xxxh  

 
Graphical inspection shows the minimum 
is at (1,5).  
 
However, we will solve as if we do not 
know this. 
 
Prepare the solution, 
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Evaluate the function and constraints 

𝐻(𝑓) = [
2 0
0 0

]   Positive semidefinite 

𝐻(𝑔1) = [
0 0
0 0

]  Linear: positive semidefinite 

𝐻(𝑔2) = [
2 0
0 2

]  Positive definite 

Conclusion: We can apply the Kuhn-Tucker conditions: 
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Here we have to explore several possibilities: 

 1=0 2=0   Equation (1): 2x1=1 

Equation (2): -1=1  
Solving these two equations together, x1=-0.5 

Equation (5):  x2=6.5     
(-0.5, 6.5) violates Equation (4), STOP 

 1≠0 2=0 Equation (6): x1=1 
Equation (5):  x2=+5 or -5     
(1,-5) violates Equation (5), STOP 
(1, 5) does not violate any constraint.     
f=-4     

 1=0 2≠0 Equation (7): 𝑥1
2 + 𝑥2

2 = 26 
Equation (5): 𝑥1 + 𝑥2 = 6 
Solutions: (1,5) or (5,1) 
Both solutions do not violate constraints. 
f=-4 or 24 
Choose (1, 5) since we are looking for a minimum.  

 1≠0 2≠0 Equation (6): x1=1 
Equation (7): x2=+5 or -5 
(1,-5) violates Equation (5), STOP 
(1, 5) does not violate any constraint.     
f=-4     

 

Note:  

The same solution came from three out of the four cases since the two inequality constraints and the 

equality constraint intersect at the same point (1, 5). 

Homework: 2.64, 2.69, 2.73 

 

 

 

 

 


