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CHAPTER 1 

INTRODUCTION TO OPTIMIZATION 

General reading on your own 

 

Homework 

1.1, 1.8, 1.19 
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CHAPTER 2 

CLASSICAL OPTIMIZATION TECHNIQUES 

This chapter is a revision of what you already learned in your math undergraduate curriculum. We are 

going through it to ensure that you have a systematic understanding of the mathematical basis of the 

optimization theory.  

Most of this work was started by Isaac Newton and was further developed through the 18th Century. 

 

Isaac Newton (1642-1726), Wikipedia 
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Single-Variable Optimization with no Constraints 

A function f(x) has a local minimum at x* if 𝑓(𝑥∗) < 𝑓(𝑥∗ + ℎ) where h is a small negative or positive 

disturbance around x*. 

Similarly, a function f(x) has a local maximum at x* if 𝑓(𝑥∗) > 𝑓(𝑥∗ + ℎ) where h is a small negative or 

positive disturbance around x*. 

 

Necessary Condition: Given a piecewise smooth function f(x) that is defined in the interval, 𝑎 ≤ 𝑥 ≤ 𝑏. 

If the function has an extremum x* within this period, then, 

𝑑𝑓(𝑥∗)

𝑑𝑥
= 𝑓′(𝑥∗) = 0 

Proof: This can be shown using the function quotient 

Note: The theory is not valid to for some cases such as f(x)=x3 

 

Sufficient Condition: Given a piecewise smooth function f(x) that is defined in the interval 𝑎 ≤ 𝑥 ≤ 𝑏.  

If 𝑓′(𝑥∗) = 𝑓′′(𝑥∗) = ⋯ = 𝑓𝑛−1(𝑥∗) = 0 and 𝑓𝑛(𝑥∗) ≠ 0, then 𝑓(𝑥∗) is, 

1. Minimum if 𝑓𝑛(𝑥∗) > 0 and n is even 

2. Maximum if 𝑓𝑛(𝑥∗) < 0 and n is even 

3. Neither minimum or maximum if n is odd (inflection/saddle point) 

Proof: This can be easily shown using Taylor’s theorem: 

 

 

 

𝑓(𝑥 + ∆𝑥) = 𝑓(𝑥) +
𝑑𝑓(𝑥)

𝑑𝑥
∆𝑥 +

1

2!

𝑑2𝑓(𝑥)

𝑑𝑥2
(∆𝑥)2

+ ⋯+
1

(𝑛 − 1)!

𝑑𝑛−1𝑓(𝑥)

𝑑𝑥𝑛−1
(∆𝑥)𝑛−1 

 

Note: The theory cannot make distinction between local and 

global extrema. 
 

Brook Taylor (1685-1731), Wikipedia 

https://en.wikipedia.org/wiki/File:BTaylor.jpg
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Example 2.1: Analyze the extrema of 𝑓(𝑥) = 5𝑥6 − 36𝑥5 +
165

2
𝑥4 − 60𝑥3 + 36 in the interval in the 

interval −1 ≤ 𝑥 ≤ 4 

𝑓′(𝑥) = 30𝑥5 − 180𝑥4 + 330𝑥3 − 180𝑥2 = 30𝑥2(𝑥3 − 6𝑥2 + 11𝑥 − 6)

= 30𝑥2(𝑥 − 1)(𝑥 − 2)(𝑥 − 3) 

𝑓′′(𝑥) = 150𝑥4 − 720𝑥3 + 990𝑥2 − 360𝑥 

𝑓′′′(𝑥) = 600𝑥3 − 2160𝑥2 + 1980𝑥 − 360 

 

𝑓′(𝑥) shows that there are possibilities for extremum at 0, 1, 2, and 3. The following can help determine 

their nature. 

x 𝑓(𝑥) 𝑓′(𝑥) 𝑓′′(𝑥) 𝑓′′′(𝑥) Observation 

0 36 0 0 -360 First nonzero derivative is odd, inflection 

1 27.5 0 60  First nonzero derivative is even, the 
value is positive: local minimum 

2 44 0 -120  First nonzero derivative is even, the 
value is negative: local maximum 

3 5.5 0 540  First nonzero derivative is even, the 
value is positive: local minimum 

Zoomed view 
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Function and derivative comparison 

 

Homework: 2.2, 2.4, 2.5, 2.11 
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Multivariable Optimization with no Constraints 

Necessary Condition: Given a piecewise smooth function f(x) that is defined in the interval 𝑎 ≤ 𝑥 ≤ 𝑏. If 

the function has an extremum x* within this period, then, 

𝜕𝑓(𝑥∗)

𝜕𝑥1
=

𝜕𝑓(𝑥∗)

𝜕𝑥1
= ⋯ =

𝜕𝑓(𝑥∗)

𝜕𝑥𝑛
= 0 

In we think in terms of x as one-dimensional array of variables, 

𝜕𝑓(𝑥∗)

𝜕𝑥
= ∇𝑓(𝑥∗) = 0 

 

Proof: This can be shown using Taylor’s theorem, 

𝑓(𝑥∗ + ℎ) = 𝑓(𝑥∗) + ∑ℎ𝑖

𝜕𝑓(𝑥∗)

𝜕𝑥𝑖

𝑛

𝑖=1

+ 𝑅1(𝑥
∗, ℎ) 
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Sufficient Condition: Given a piecewise smooth function f(x) that is defined in the interval 𝑎 ≤ 𝑥 ≤ 𝑏, a 

sufficient condition for a point x* to be an extremum is that the matrix of second partial derivatives 

(Hessian matrix, J) of f(x) when evaluated at x* is,  

1. Minimum if 𝐽(𝑥∗) is positive definite 

2. Maximum if 𝐽(𝑥∗) is negative definite 

3. Inflection/saddle point if 𝐽(𝑥∗) is indefinite* 

Proof: This can be shown using Taylor’s theorem, 

𝑓(𝑥∗ + ℎ) = 𝑓(𝑥∗) + ∑ℎ𝑖

𝜕𝑓(𝑥∗)

𝜕𝑥𝑖

𝑛

𝑖=1

+
1

2!
∑∑ℎ𝑖ℎ𝑗

𝜕2𝑓(𝑥∗)

𝜕𝑥𝑖𝜕𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

Note: The theory cannot make distinction between local and global extrema. 

It may be more useful to express the above equation in a matrix form. 

𝑓(𝑥∗ + ℎ) = 𝑓(𝑥∗) + [ℎ]𝑇 {
𝜕𝑓(𝑥∗)

𝜕𝑥𝑖
} +

1

2!
[ℎ]𝑇[𝐽(𝑥∗)]{ℎ} 

where J is the Hessian matrix of the function. 

𝐽(𝑥∗) =

[
 
 
 
 
 
𝜕2𝑓(𝑥∗)

𝜕𝑥1𝜕𝑥1
…

𝜕2𝑓(𝑥∗)

𝜕𝑥1𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕2𝑓(𝑥∗)

𝜕𝑛𝜕𝑥1
…

𝜕2𝑓(𝑥∗)

𝜕𝑥𝑛𝜕𝑥𝑛 ]
 
 
 
 
 

 

Note: The Hessian matrix is always square and symmetric (why?)  

 

Otto Hesse (1811-1874), Wikipedia 
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Definition: A matrix is positive definite if all eigenvalues are positive. This means that  

|𝐴 − 𝜆 𝐼| = 0 

A matrix is negative definite if all eigenvalues are negative. 

Note: Eigenvalues can be calculated using eig function in MATLAB. 

*A saddle point is maximum in one variable and minimum in another. An example 

𝑓(𝑥) = 𝑥1
2 − 𝑥2

2 
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Example 2.2: Analyze the extrema of 𝑓(𝑥1, 𝑥2) = 2 − 𝑥1
2 − 𝑥1𝑥2 − 𝑥2

2 in the interval in the interval 

−2 ≤ 𝑥1 ≤ 2 and −2 ≤ 𝑥2 ≤ 2 

 

This is a quadratic function. 

𝜕𝑓

𝜕𝑥
= ∇𝑓 = {

−2𝑥1 − 𝑥2

−𝑥1 − 2𝑥2
} = {

0
0
} 

The first equation is zero at 𝑥1 = −𝑥2/2  

The second equation is zero at 𝑥1 = −2𝑥2 

Therefore, extremum is only possible at (0, 0)  

𝜕2𝑓

𝜕𝑥2
= 𝐽 = [

−2 −1
−1 −2

] 

This matrix is independent of 𝑥1 and 𝑥2 (why?) 

Test the eigenvalues of J: 

|𝐽 − 𝜆 𝐼| = 0 

|[
−2 −1
−1 −2

] − 𝜆 [
1 0
0 1

]| = 0 

|[
−2 − 𝜆 −1

−1 −2 − 𝜆
]| = 0 

(−2 − 𝜆)2 − 1 = 0 

𝜆2 + 4𝜆 + 3 = 0 

The eigenvalues are (-3, -1), which shows that the matrix is negative definite.  

This means that (0, 0) is maximum. 
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Example 2.3: Analyze the extrema of 𝑓(𝑥1, 𝑥2) = (𝑥1 − 1)2(𝑥2 + 1) − 𝑥2 in the interval in the interval 

−1 ≤ 𝑥1 ≤ 3 and −2 ≤ 𝑥2 ≤ 2 

𝜕𝑓

𝜕𝑥
= ∇𝑓 = {

2(𝑥1 − 1)(𝑥2 + 1)

(𝑥1 − 1)2 − 1
} = {

2(𝑥1 − 1)(𝑥2 + 1)

𝑥1
2 − 2𝑥1

} = {
0
0
} 

The first equation is zero at 𝑥1 = 1 or 𝑥2 = −1 

The second equation is zero at 𝑥1 = 0 𝑜𝑟 2 

Therefore, 𝑥1 = 1 cannot be accepted as using it wll result in a nonzero value of the second equation of 

∇𝑓. 

Therefore, the extremum are possible at (0, -1) and (2, -1). 

To assess the nature of these two points, we derive the Hessian matrix. 

𝜕2𝑓

𝜕𝑥2
= 𝐽 = [

2(𝑥2 + 1) 2(𝑥1 − 1)

2(𝑥1 − 1) 0
] 

Substituting in (0, -1) 

𝐽 = [
0 −2

−2 0
] 

The eigenvalues are (-2, 2), which shows that the matrix is indefinite.  

This means that (0, -1) is a saddle point. 

Substituting in (2, -1) 

𝐽 = [
0 2
2 0

] 

The eigenvalues are (-2, 2), which shows that the matrix is indefinite.  

This means that (2, -1) is a saddle point. 
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Homework: 2.12, 2.18, 2.21, 2.26, 2.32 

 


