Example on FEM constant strain triangular element

![]()
![]()
![]()
thickness
enter the nodal coordinates
![]()
![]()
![]()
![]()
element 1: nodes: 1,2,4
element 2: nodes: 1,3,4
![]()
![]()
![]()
![]()
![]()
area of element 1
![]()
![]()
area of element 2
![]()



Create stiffness matrices
![]()

![]()

Expand stiffness matrices
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()

![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()

![]()

Reduced Stiffness matrix
![]()

Boundary Conditions:

Forces: Two forces on nodes 3 and 4 in x and y directions respectively. Distribted force on 3-4 endge (element 2 only).

![]()

The line equation is,
![]()
A matrix is,


Multiply by the equation of the 3-4 edge

results in,
![]()
by matrix transposition, yields


yields
![]()
Force correspond to u1,u3, and u4 respectively



displacements of nodes 3 and 4 in x and y directions


Display the results:
![]()
magnification factor

Upper edge:

yields
![]()

yields
![]()
![]()
![]()
![]()
![]()
Outer edge:

yields
![]()

yields
![]()
![]()
![]()
![]()


Lower edge

yields
![]()

yields
![]()
![]()
![]()
![]()
![]()
![]()
Undeformed shape
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
