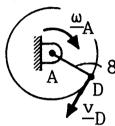

Rotating gears Kinematics Example

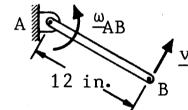


Gears A and B (gear teeth not shown) are connected by arm AB.

Given:
$$\underline{\omega}_{A} = 60 \text{ rpm}$$

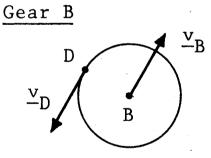
Find:
$$\underline{\omega}_{B}$$
 if (a) $\underline{\omega}_{AB} = 40 \text{ rpm}$

(b)
$$\underline{\omega}_{AB} = 40 \text{ rpm}$$

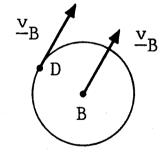


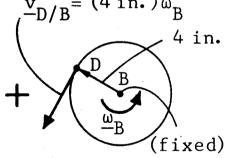
8 in.

$$\underline{\text{Gear A}}. \qquad \underline{\omega}_{A} = 60 \text{ rpm}$$


$$\underline{\mathbf{v}}_{\mathrm{D}} = (8 \text{ in.}) \boldsymbol{\omega}_{\mathrm{A}}$$

(a) Arm AB Rotates




$$\underline{\mathbf{v}}_{\mathrm{B}} = (12 \text{ in.}) \omega_{\mathrm{AB}}$$

Denote by D the two teeth in contact

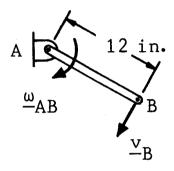
Plane motion

$$\frac{\mathbf{v}_{D}}{\mathbf{v}_{B}} = \frac{\mathbf{v}_{B}}{\mathbf{v}_{D}/B}$$
+ \mathbf{v}_{A}

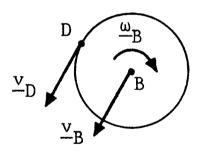
$$\mathbf{v}_{A} = -12\omega_{AB} + 4\omega_{B}$$

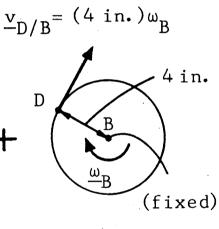
$$\omega_{B} = 2\omega_{A} + 3\omega_{AB} = 2(60 \text{ rpm}) + 3(40 \text{ rpm}) = 240 \text{ rpm}$$

=


$$\underline{\omega}_{B}$$
= 240 rpm

(continued)


$$\underline{\text{Gear A}}. \qquad \underline{\omega}_{A} = 60 \text{ rpm}$$


We have found:
$$\underline{v}_D = (8 \text{ in.}) \omega_A$$

(b) Arm AB Rotates

$$\underline{\mathbf{v}}_{\mathbf{B}} = (12 \text{ in.}) \omega_{\mathbf{AB}}$$

Plane motion

$$\underline{\mathbf{v}}_{\mathbf{D}} = \underline{\mathbf{v}}_{\mathbf{B}} + \underline{\mathbf{v}}_{\mathbf{D}} / \mathbf{B}$$

$$\omega_{\rm B} = 3\omega_{\rm AB} - 2\omega_{\rm A} = 3(40 \text{ rpm}) - 2(60 \text{ rpm}) = 0$$

$$\frac{\omega_{\rm B}}{} = 0$$

Motion of Gear B is a curvilinear translation.