$$
d W=\vec{F} \cdot d \vec{s}
$$

Pure rot. about A, release from honiz. position

Pure not abort $A: I_{A}=I_{G}+m\left(\frac{L}{2}\right)_{2}^{2}$

$$
I_{A}=\frac{1}{3} m L^{2} \quad A-6
$$

$$
T_{2}=\frac{1}{2} I_{A} \omega_{2}^{2} \quad U_{1,2}=0 \pm m g \frac{L}{2}
$$

$$
T_{1}+U_{1 \rightarrow 2}=T_{2} L
$$

$$
0+\operatorname{ing} \frac{L}{F}=\frac{1}{2} \cdot \frac{1}{3} \lambda_{4} L^{2} \omega_{2}^{2}
$$

$$
\omega_{2}^{2}=\frac{3 g}{L}
$$

updated mid term estimates posted. (242)

Work of $P: \frac{B_{1}}{r} \times \vec{P} \quad 400 \mathrm{~N} \cdot 8 \mathrm{~m}=\frac{1}{2} \cdot 200 \cdot \omega_{2}^{2}$
$I_{G}=m k^{2}=200 \mathrm{~kg} \cdot 0.325^{2} \mathrm{~m}^{2} \left\lvert\, \begin{aligned} & \text { solve for } \omega_{2} \\ & \omega_{2}=17.4 \frac{\mathrm{rad}}{\mathrm{s}}\end{aligned}\right.$
(a) If the system is released from rest, determine the speed of the 20 kg cylinder A after A has moved downward a distance of 2 m . The differential pulley has a mass of 15 kg with a radius of gyration about its center of mass of $\mathrm{k} _\mathrm{O}=100 \mathrm{~mm}$.

$$
\omega=\frac{v_{A}}{\sqrt{A}_{A}} \frac{d}{d s_{A}+\underbrace{20}_{m_{A}}}
$$

$\uparrow U_{B}=r_{B} \cdot \omega$
$1 B_{B}^{4 d s, B}$

$$
\begin{aligned}
& 1: d W_{A}=m_{A} \cdot g \cdot r_{A} \cdot d \theta \\
& T=\frac{1}{2} I_{0} W^{2}+\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}
\end{aligned}
$$

$$
\begin{aligned}
T_{\text {Disk }}= & \frac{1}{2} I_{0} \cdot \omega^{2}=\frac{1}{2} \cdot 15 \cdot 0.1^{2} \cdot \omega^{2}=0.075 \omega^{2}=\frac{0.075}{0.15^{2}} \cdot v_{A}^{2} \\
& T_{A}=\frac{1}{2} m_{A} v_{A}^{2}=\frac{1}{2} \cdot 20 v_{A}^{2}=10 v_{A}^{2} ; T_{B}=\frac{1}{2} \cdot 15 \cdot 1 v^{2} \\
T= & T_{D}+T_{A}+T_{B}=15.8 v_{A}^{2}
\end{aligned}
$$

for $S_{A}=2 \mathrm{~m}: \omega=\frac{v_{A}}{r_{A}}=\frac{v_{A}}{0.15}=6.67 v_{A} ; U_{B}=0.5 v_{A}$ Work: $m_{A} \cdot g \cdot S_{A}=20.9 .81 \cdot 2=392.4 \mathrm{f}(A)$

$$
B:-m_{B} g \cdot s_{B}=\quad-196.2 \mathrm{~J}
$$

Energy: $0+392.4-196.2=15.8 v_{A}^{2}$ at 2 m Travel: $U_{A}=3.52 \mathrm{~m} / \mathrm{s} \quad \downarrow ; U_{B}=1.76 \frac{\mathrm{~m} 4}{\mathrm{~s}}$

Problem 18.30

$$
T_{1}=0
$$

The 100-lb block is transported a short distance by using two cylindrical rollers, each having a weight of $35-\mathrm{lb}$. (a) If a horizontal force $\mathrm{P}=25$ (lb) is applied to the block, determine the block's speed after it has been isp' $\quad 12 \mathrm{ft}$ to the left. Start from rest,

Roller: $T_{\text {trues l }}+T_{\text {not }}$

$$
\begin{aligned}
T_{R_{0} t} & =\frac{1}{2} \bar{I} \cdot \omega^{2}=\frac{1}{2} m_{R} R^{2} \cdot\left(\frac{v_{r}}{n}\right)^{2} \\
& =\frac{1}{2} m_{k} \cdot v_{r}^{2}-\frac{1}{2} m_{R}\left(\frac{v_{B}}{2}\right)^{2}
\end{aligned}
$$

$$
v_{B}=5.05 \frac{\mathrm{ff}}{\mathrm{~s}}
$$

for Monday: Read Rest of Ch. 181,

$$
V=\ln g h+\frac{1}{2} h(x x)^{2}
$$

(2)
18.5 Conservation of Energy

3rd Midterm Wed 4/26
Topaics:
ch. 17,18
Ch. 15.1-3 Impulse

$$
\begin{aligned}
& T_{1}+V_{1}=T_{2}+V_{2} \\
& T_{1}=\frac{1}{2} m v_{1}^{2}+\frac{1}{2} T_{G} \omega_{1}^{2}+0=\frac{1}{2} m v_{2}^{2}+\frac{1}{2} I_{G} \cdot \omega_{2}^{2} \\
& \text { substitute } v=r \omega \quad+\frac{1}{2} k \cdot(1.2 \pi)^{2}-1.2 \pi \cdot \sin 30^{\circ}
\end{aligned}
$$

cath solve for $\mathrm{\omega}_{2}$

$$
\begin{aligned}
& \text { clockwise at }{ }^{-} \text {. } \quad \cdots \text { The spring attached } \\
& \text { to its end always remains vertical due to } \\
& \text { the roller guide at C. (a) If the spring has } \\
& \text { an } \ldots \ldots \text { and a stiffness } \\
& \text { of } \mathrm{k}=6(\mathrm{lb}) /(\mathrm{ft}) \text {, determine the angular vel. } \\
& \text { Approach: pure rom. about } A \\
& \Rightarrow I_{A} \\
& T_{1}+V_{1}=T_{2}+V_{2} \\
& \frac{1}{2} I_{A} \cdot \omega_{1}^{2}+0+\frac{1}{2} k\left(x-x_{0}\right)^{2}=\frac{1}{2} I_{A} \cdot \omega_{2}^{2}+\frac{1}{2} k\left(x_{2}-x_{0}\right)^{2}-1,5 \cdot 50 \\
& (7-2)^{2}
\end{aligned}
$$

We can solver for $\omega_{2}: \quad \omega_{2}=-2.3 \mathrm{~K} \cdot \frac{\mathrm{rad}}{\mathrm{s}}$ Recap: Define Datum, (1) and (2)

$$
U_{B}=r \omega_{\text {Bat }} j U_{G, 2}=1.5 \cdot \omega_{2}^{(3)} \Rightarrow \omega_{2, \text { Bar }}=\frac{v_{G}}{1.5} j
$$

$$
V_{c_{1} 2}=3 \omega_{2}^{(4)} \quad \text { insert (3) and (4) into }
$$ energy eq.

$$
v_{c}=13.3 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Problem 18.51
The $30-\mathrm{kg}$ pendulum has its mass center at G and a radius of gyration about point G of $k _G$ $=300 \mathrm{~mm}$. (a) If it is released from rest when theta $=0$ degree (s), determine its angular velocity at the instant theta $=90$ degree (s). Spring AB has a stiffness of $\mathrm{k}=300 \mathrm{~N} / \mathrm{m}$ and is unstretched at theta $=0$.

