## Chapter 6 Dimensions and Units

### Length

The standard unit of length in the metric system is the meter. Other units of length and their equivalents in meters are as follows:

- 1 millimeter = 0.001 meter
- 1 centimeter = 0.01 meter
- 1 decimeter = 0.1 meter
- 1 kilometer = 1000 meters

We abbreviate these lengths as follows:

1 millimeter = 1 mm

1 centimeter = 1 cm

1 meter = 1 m

1 decimeter = 1 dm

1 kilometer = 1 km

#### Volume

The standard unit of volume in the metric system is the liter. One liter is equal to 1000 cubic centimeters in volume. Other units of volume and their equivalents in liters are as follows:

- 1 milliliter = 0.001 liter
- 1 centiliter = 0.01 liter
- 1 deciliter = 0.1 liter
- 1 kiloliter = 1000 liters

#### Decimals in measurement

We use decimals to specify units of measurement when we need more precision about length, volume, mass, or time. For example, when specifying the height of a person 1.63 meters tall, to say that person is 1 or 2 meters tall doesn't give us a very good idea of how tall that person really is.

The prefixes for the different units of length, volume, and mass in the metric system obey the following rules:

**Prefix** 

**Multiply by** 

milli-

0.001

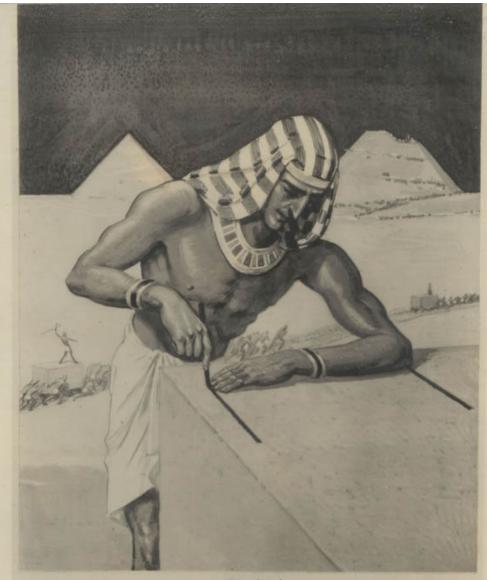
centi-

0.01

deci-

0.1

deka-

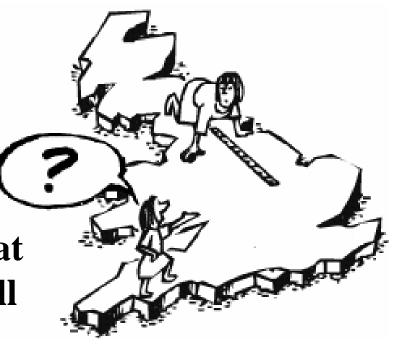

10

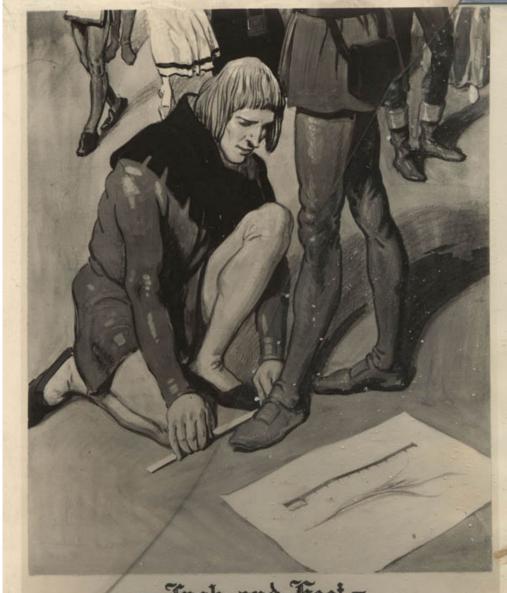
hecto-

100

#### So for example:

- 1 hectometer = 100 meters
- 1 centigram = 0.01 gram
- 3 *milli*liters =  $3 \times (0.001 \text{ liters}) =$
- 0.003 liters
- $0.9 \ kilometers = 0.9 \times (1000 \ meters)$
- = 900 meters





- Cubit 
First known measurement.

About 20 inches.

Tength of forearm from point of elbow to end of the middle finger.

It was not until the reign of Richard the Lionheart that the standardisation of units of measurement was first documented. In the Assize of Measures in 1196 it was stated that "Throughout the realm there shall be the same yard of the same size and it should be of iron". The Magna Carta (1215) also attempted to standardise measurements throughout the kingdom, although it concentrated on measures of wine and beer!





- Inch and Foot-Three barley corns taken from center of ear placed end to end equals one inch.

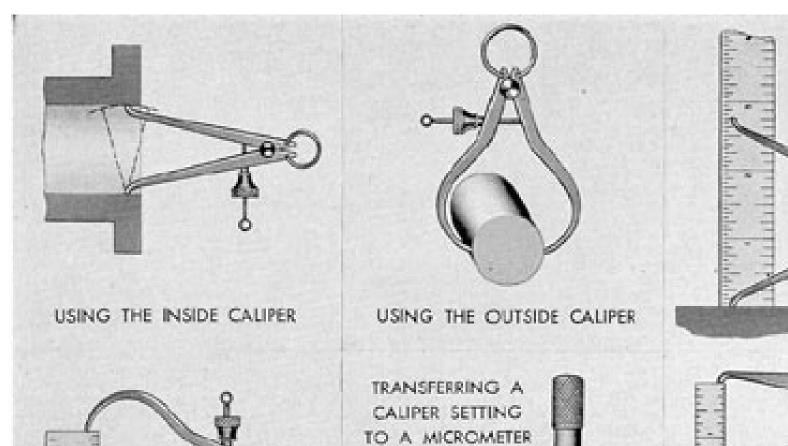
(Edward II 1324)

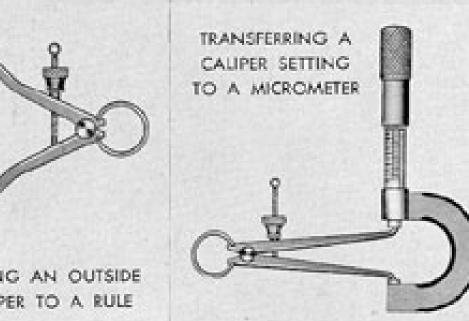
A foot ranged from 9% inch to 19 inches.

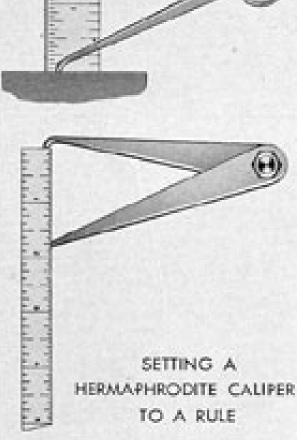
## The metric system of measurement.

The metric system of measurement is used generally throughout the world, particularly in Europe. It is not in general use in the United States. Because the metric system is a decimal system, it is less subject to arithmetical error than the English system of measurement.

#### Fundamental and standard units

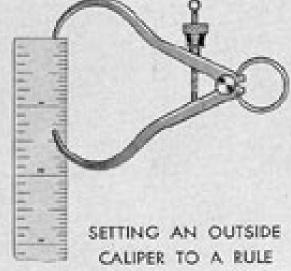

The fundamental units are units of mass, length, time, and other units.


Table 6.2 Base Units

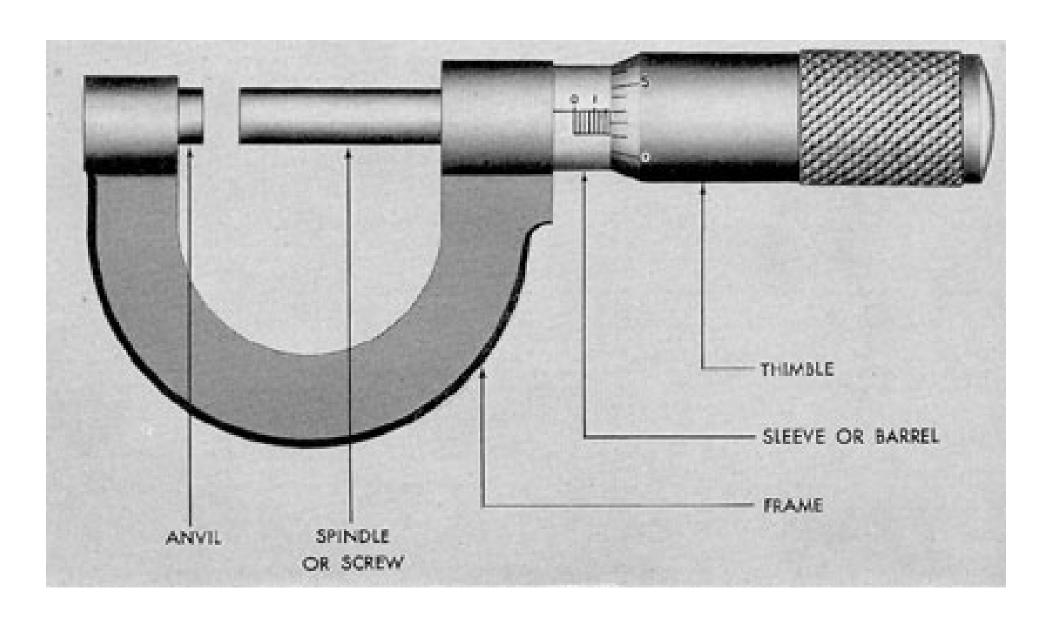

| Quantity                                | Name     | Symbol |  |
|-----------------------------------------|----------|--------|--|
| Length                                  | meter    | m      |  |
| Mass                                    | Kilogram | kg     |  |
| Time                                    | second   | S      |  |
| Electric current                        | ampere   | Α      |  |
| <ul> <li>Thermodynamic temp.</li> </ul> | kelvin   | K      |  |
| Amount of substance                     | mole     | mol    |  |
| Luminous intensity                      | candela  | cd     |  |

#### Definition: METER

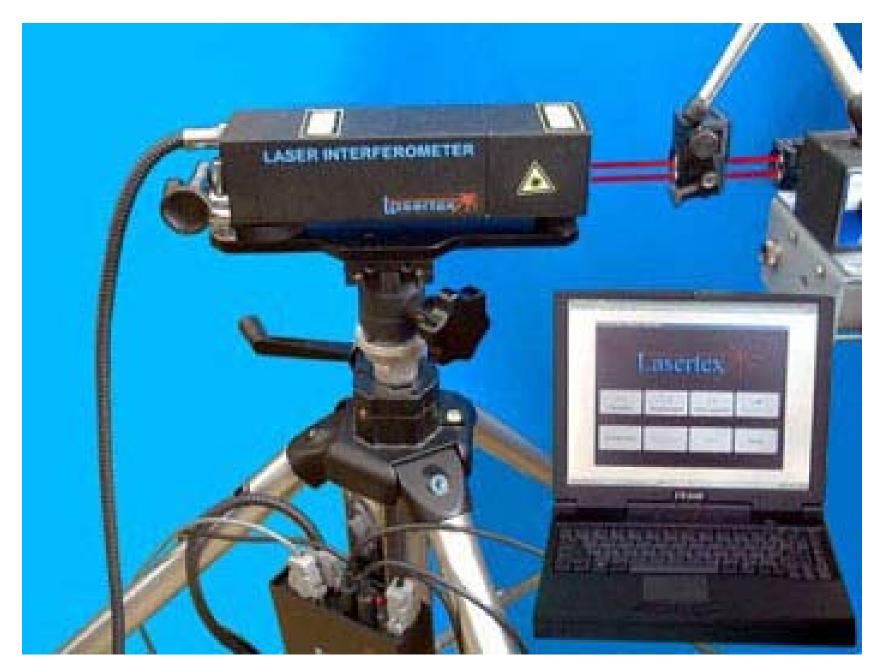
In 1791, soon after the French Revolution, the French Academy of Sciences defined the meter as 10<sup>-7</sup> or one ten-millionth of the length of the meridian through Paris from pole to the equator. However, the first prototype was short by 0.2 millimeters because researchers miscalculated the flattening of the earth due to its rotation.



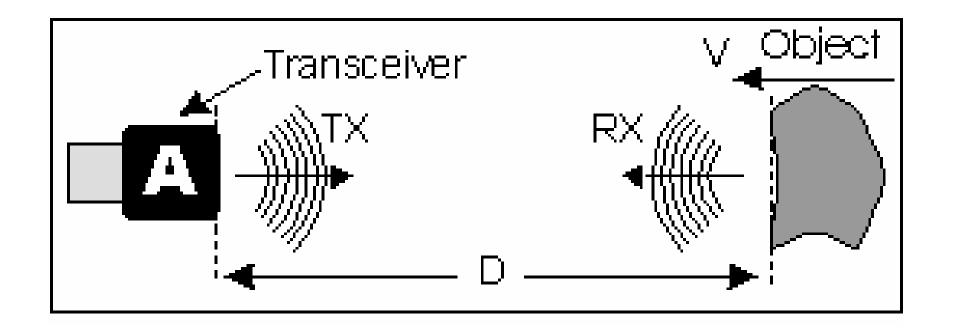



SETTING AN


INSIDE CALIPER TO A RULE




In 1889, a new international prototype was made of an alloy of platinum with 10 percent iridium, that was to be measured at the melting point of ice. In 1927, the meter was more precisely defined as the distance, at 0°, between the axes of the two central lines marked on the bar of platinumiridium



Micrometer



Laser distance measurement



# Ultrasound distance measurement



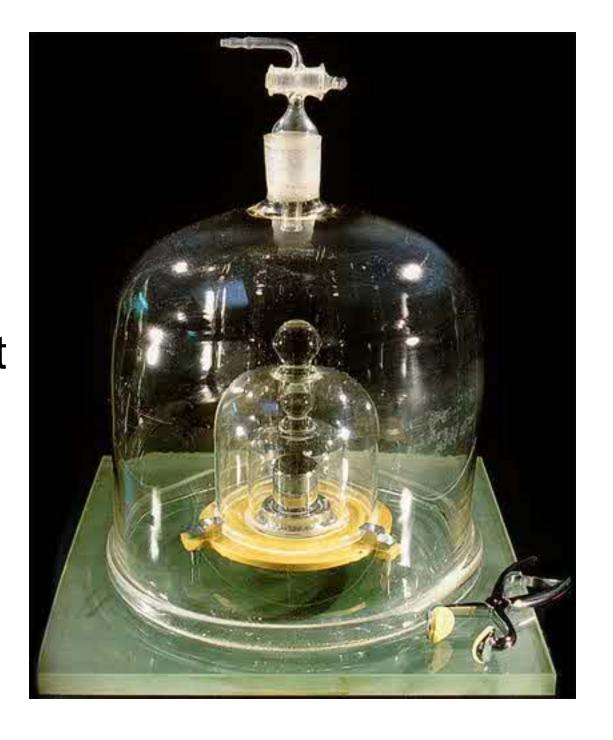
# New Units of distance measurement

#### The 1983 definition:

The meter is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.

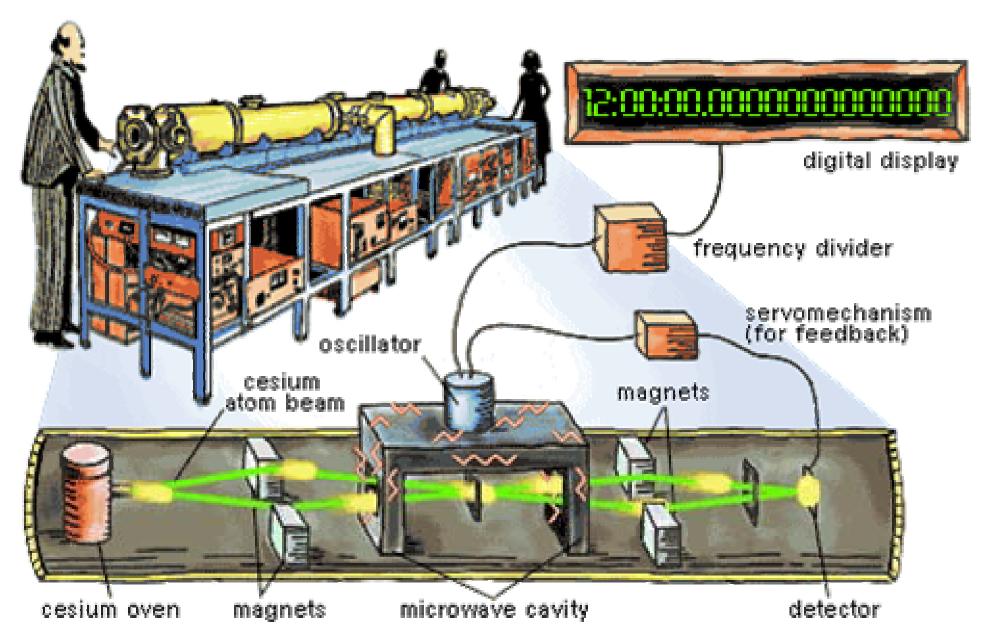
Question: what is the advantage of this definition?

## Unit of mass (kilogram)


At the end of the 18th century, a kilogram was the mass of a cubic decimeter of water. In 1889, the 1st CGPM sanctioned the international prototype of the kilogram, made of platinum-iridium, and declared: This prototype shall henceforth be considered to be the unit of mass.

The 3d CGPM (1901), in a declaration intended to end the ambiguity in popular usage concerning the word "weight," confirmed that:

The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.


#### The kilogram

The platinumiridium international prototype, as kept at the International Bureau of Weights and Measures



### Unit of time (second)

The unit of time, the second, was defined originally as the fraction 1/86 400 of the mean solar day. The exact definition of "mean solar day" was left to astronomical theories.



Cesium Clock

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.

## Unit of electric current (ampere)

The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2 x 10<sup>-7</sup> newton per meter of length.

## Unit of thermodynamic temperature (kelvin)

The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.

Conversion:  $t/^{\circ}C = T/K - 273.15.$ 

|                          |                                                                   |                                  | N .                                                  |                                           |                                                    |                                               |                                          |                                               |
|--------------------------|-------------------------------------------------------------------|----------------------------------|------------------------------------------------------|-------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------------------------|-----------------------------------------------|
| Quantity<br>(SI Unit)    | Length<br>(m)                                                     | Mass<br>(kg)                     | Time<br>(s)                                          | Therodynamic<br>Temperature<br>(k)        | Electric<br>Current<br>(A)                         | Luminous<br>Intensity<br>(cd)                 | Amount of<br>Substance<br>(mol)          | Volme, Force<br>Power, etc.<br>(Derived Units |
|                          |                                                                   | 1.3                              | a la                                                 |                                           |                                                    |                                               | The second                               |                                               |
| Definition<br>Prototype  | I <sub>2</sub> -Stabilized<br>H <sub>2</sub> N <sub>2</sub> Laser | Kilogram<br>prototype            | Transition<br>frequency of<br><sup>188</sup> Cs atom | Triple point of water                     | Josephson<br>effect and<br>Quantum<br>Hall effect  | Special<br>luminous<br>efficacy at<br>540 THz | Atomic weight<br>of <sup>12</sup> C atom | Definitions<br>of<br>Derived Units            |
|                          |                                                                   |                                  |                                                      |                                           |                                                    |                                               |                                          | -                                             |
| Standards<br>Realization | Interferometer<br>System                                          | Precision<br>Mass<br>Comporator  | Cs<br>atomac<br>clock                                | International<br>temperature<br>scale -90 | Standard<br>electric<br>current unit               | FCR & Self<br>calibrated<br>Si photodiode     |                                          | Standard<br>for<br>Derived Units              |
|                          |                                                                   |                                  |                                                      |                                           |                                                    |                                               |                                          |                                               |
| Reference<br>Standards   | Master<br>guage block<br>standard scale                           | Reference<br>standard<br>weights | Quartz<br>frequency<br>standards                     | Reference<br>Standard<br>thermometers     | Standard<br>cells and<br>standard<br>registor sets | Reference<br>Standard<br>Iamp                 |                                          | Reference<br>Standard                         |
|                          |                                                                   |                                  | 1                                                    |                                           |                                                    |                                               |                                          |                                               |
| Transfer<br>Standards    | Gauge block,<br>Standardscale                                     | Standard<br>weight sets          | Standard<br>HF broadcast                             | Standard<br>thermometers                  | Standard<br>cells and<br>resistors                 | Standard<br>lamp                              |                                          | Working<br>standards                          |

### Measurement Standards

#### SI derived units

Other quantities, called *derived* quantities, are defined in terms of the seven base quantities via a system of quantity equations. The SI derived units for these derived quantities are obtained from these equations and the seven SI base units. Examples of such SI derived units are given below.

| area               | square meter                | $m^2$              |
|--------------------|-----------------------------|--------------------|
| volume             | cubic meter                 | $m^3$              |
| speed,<br>velocity | meter per second            | m/s                |
| mass density       | kilogram per<br>cubic meter | kg/m <sup>3</sup>  |
| specific<br>volume | cubic meter per<br>kilogram | m <sup>3</sup> /kg |

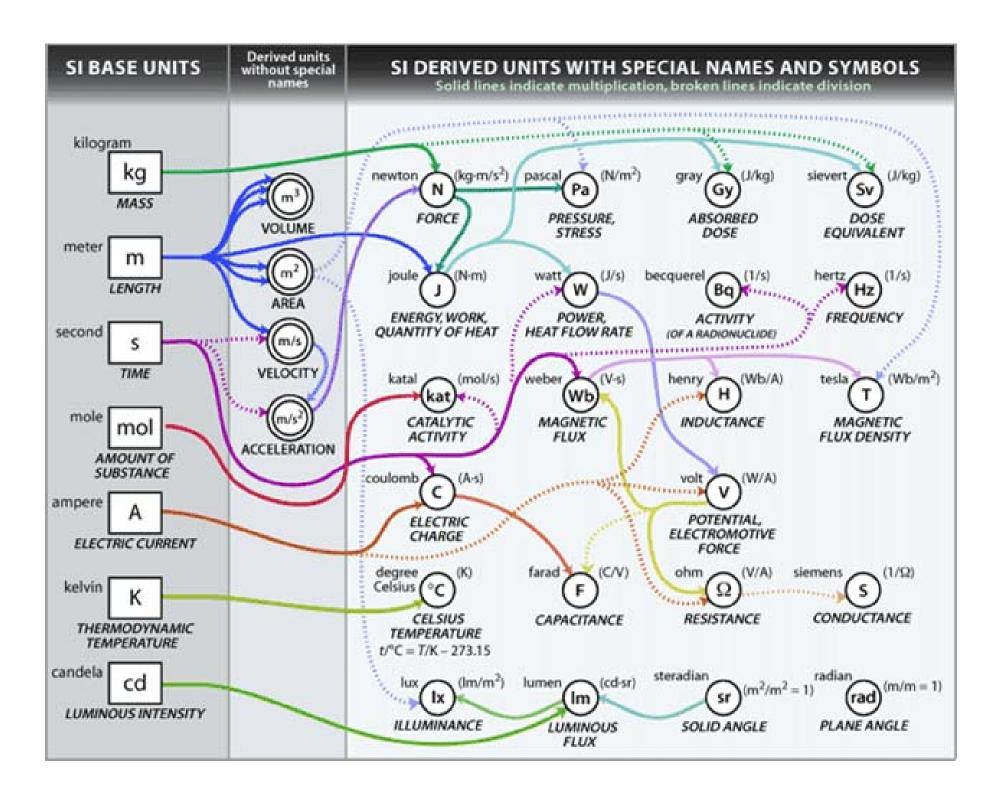
| Force       | newton | $1N = 1m \cdot kg \cdot s^{-2}$      |
|-------------|--------|--------------------------------------|
| Frequency   | hertz  | $1 \text{ Hz} = 1 \text{ s}^{-1}$    |
| Pressure,   | pascal | $1 \text{ Pa} = 1 \text{N/m}^2 =$    |
| stress      |        | 1m <sup>-1</sup> -kg·s <sup>-2</sup> |
| energy,     | joule  | 1 J = 1 N·m =                        |
| work,       |        | 1 m <sup>2</sup> ·kg·s <sup>-2</sup> |
| quantity of |        |                                      |
| heat        |        |                                      |

| Power        | watt  | <b>1W</b> = 1J·s <sup>-1</sup> =     |  |
|--------------|-------|--------------------------------------|--|
|              |       | $1 V*1A = 1 Nm -s^{-1}$              |  |
| energy, work | joule | 1 J = 1 N·m =                        |  |
|              |       | 1 m <sup>2</sup> ·kg·s <sup>-2</sup> |  |

Note: The power company measures consumption of electricity in kilowatthours (kWh).

What are we buying?

**Power** (symbol: P) is the amount of work done per unit of time. This can be modeled as an energy flow, equivalent to the rate of change of the energy in a system. The **average power** is the average amount of work done or energy transferred per unit time. The **instantaneous power** is then the limiting value of the average power as the time interval  $\Delta t$  approaches zero.  $P = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t} = \lim_{\Delta t \to 0} P_{\text{avg}}$ 


When the rate of energy transfer or work is constant, all of this can be simplified to  $P = \frac{W}{W} = \frac{E}{W}$ 

where W and E are, respectively, the work done or energy transferred in time t.

| Power        | watt  | <b>1W</b> = 1J·s <sup>-1</sup> =     |  |
|--------------|-------|--------------------------------------|--|
|              |       | $1 V*1A = 1 Nm -s^{-1}$              |  |
| energy, work | joule | 1 J = 1 N·m =                        |  |
|              |       | 1 m <sup>2</sup> ·kg·s <sup>-2</sup> |  |

Note: The power company measures consumption of electricity in kilowatthours (kWh).

What are we buying?



## End