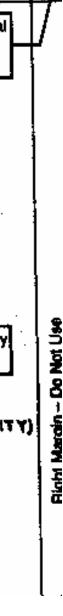
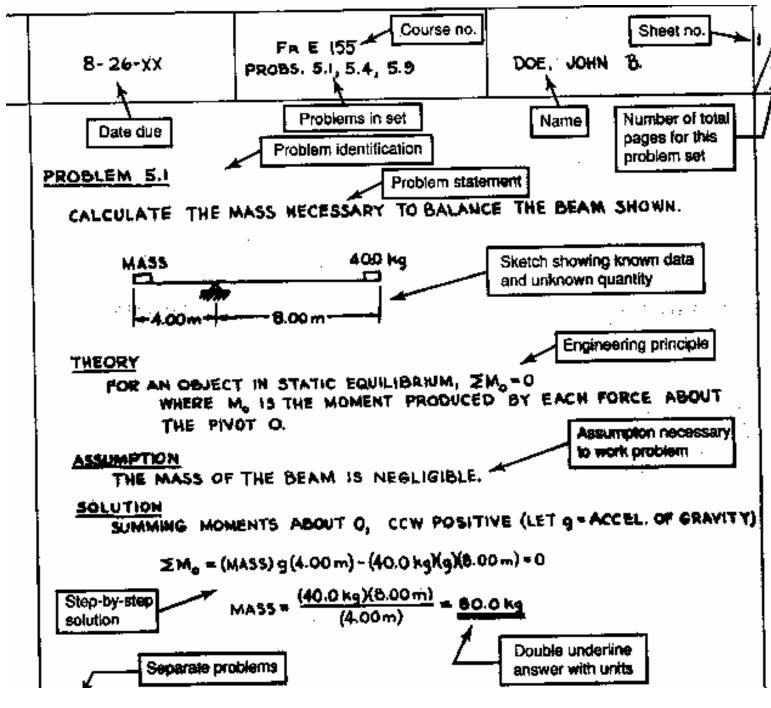
Chapter 3 Engineering Solutions

3.4 and 3.5 Problem Presentation

Organize your work as follows (see book):

Problem Statement
Theory and Assumptions
Solution
Verification





Tools:

Pencil and Paper
See Fig. 3.1 in Book
or use
Analysis Software,
e.g. Mathcad

Tools:

Word Processor
See Fig. 3.3a and b in Book
Benefits:

Neater appearance
Import graphics
Import results from other tools,
such as spread sheets

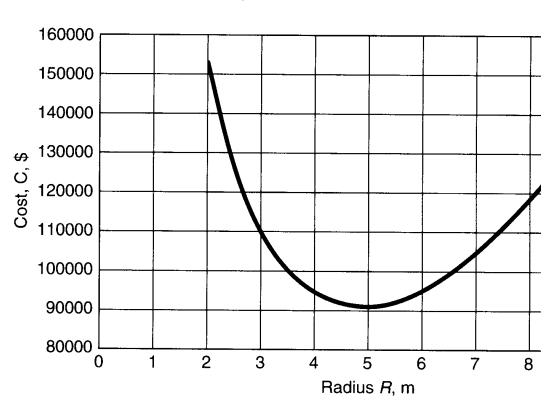
1. Express total volume in meters as a function of height and radius.

$$V_{Tank} = f(H, R)$$

$$= V_C + V_H$$

$$500 = \pi R^2 H + \frac{2\pi R^3}{3}$$

Note: $1m^3 = 1000 L$



Source: Eide, Fig. 3.3a

Analysis Software:

Advantages:

- Always clean and organized
- •Numerics will be correct (assuming you entered correct equations)
- Automated graphing and presentation tools
- Superior error and plausibility checking

Analysis Software:

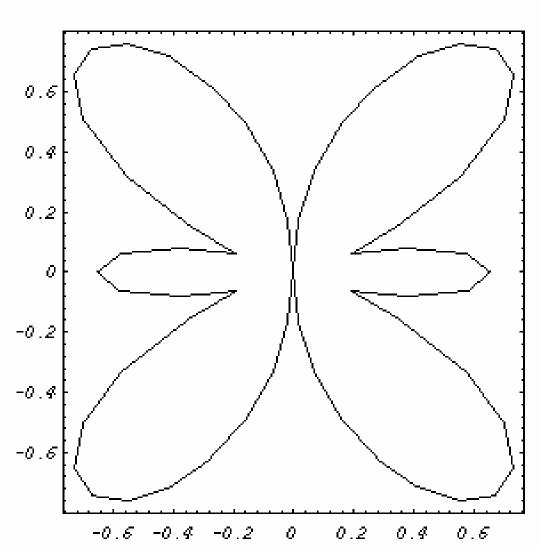
So why aren't you using Math software yet?

Examples of Analysis Software:

- Mathematica (symbolic)
- •Maple (symbolic)
- •Mathcad (general and symbolic)
- •Matlab (numerical)
- Numerous specialty products

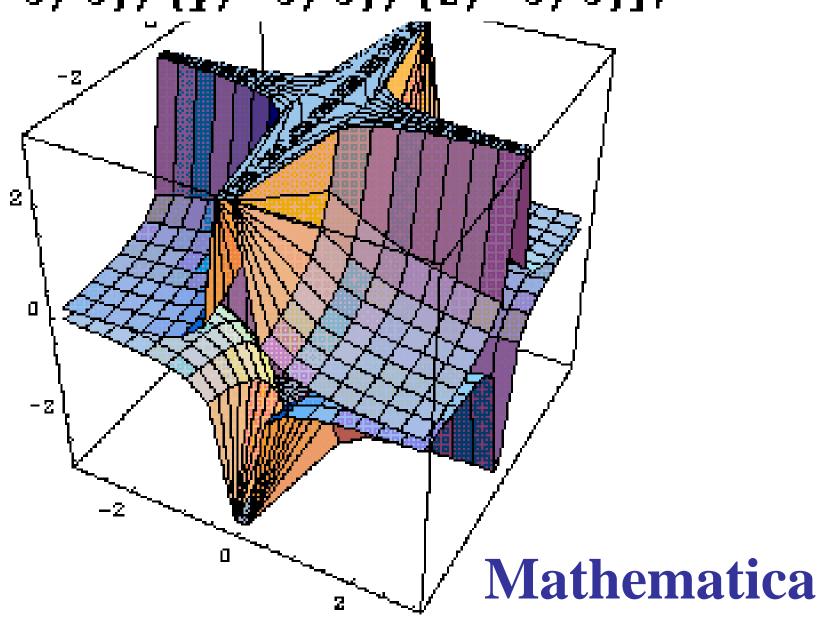
Dipole (physics) analysis example

Mathematica



absgraph = InequalityPlot3D[Abs[xyz] < 1,

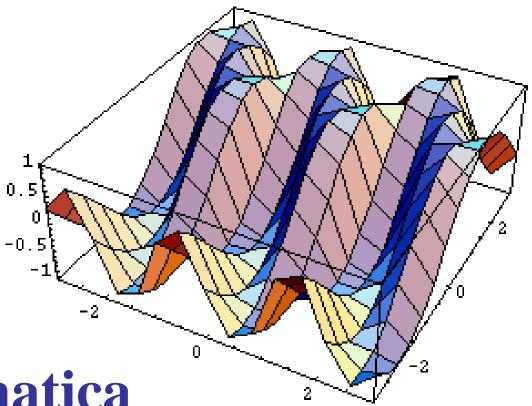
 $\{x, -3, 3\}, \{y, -3, 3\}, \{z, -3, 3\}\};$



$ln[4] = Integrate[1/{x^3-1}, x]$

$$\text{Out[4]= } \left\{ -\frac{\text{ArcTan}\left[\frac{\textbf{1}+2\textbf{x}}{\sqrt{3}}\right]}{\sqrt{3}} + \frac{1}{3} \text{Log}[-\textbf{1}+\textbf{x}] - \frac{1}{6} \text{Log}[\textbf{1}+\textbf{x}+\textbf{x}^2] \right\}$$

$$h[5] = Plot3D[Sin[y + Sin[3x]], \{x, -3, 3\}, \{y, -3, 3\}]$$



Mathematica

Out[5]= - SurfaceGraphics -

Mathcad Calculus Example

$$y(x) = \frac{x^3}{\sqrt{\frac{1+x^2+x^3}{\sin(3\cdot x)}}}$$

Symbolics Example (Mathcad)

Maple Differentiation

$$\frac{d}{dx}y(x) = 3 \cdot \frac{x^2}{\left[\frac{1}{1+x^2+x^3}\right]^{\frac{1}{2}}} - \frac{1}{2} \cdot \frac{x^3}{\left[\frac{1}{1+x^2+x^3}\right]^{\frac{3}{2}}} \cdot a$$

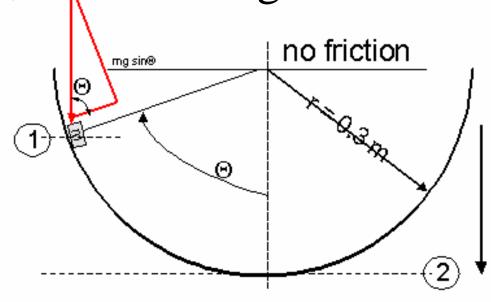
$$\left[\frac{\left(1+x^2+x^3\right)}{\sin(3\cdot x)}\right]^{\frac{1}{2}} - \left[\frac{\left(1+x^2+x^3\right)}{\sin(3\cdot x)}\right]^{\frac{3}{2}}$$

with

$$a = \left[\frac{\left(2 \cdot x + 3 \cdot x^2\right)}{\sin(3 \cdot x)} - 3 \cdot \frac{\left(1 + x^2 + x^3\right)}{\sin(3 \cdot x)^2} \cdot \cos(3 \cdot x) \right]$$

Examples in Mathcad: compute motion

of sliding block.



Problem C17-92

m := 0.02 g := 9.81
r := 0.3
$$\theta 0 := 75 \cdot \frac{\pi}{180}$$

 $\theta 0 = 1.309$

We choose:

Datum line at bottom of Trough.

T1 =0, $V(\Theta)$ = -mgh*cos Θ Energy equation:

$$-m \cdot g \cdot r \cdot \cos(\theta 0) + 0 = \frac{1}{2} \cdot \left(m \cdot v^2 \right) - m \cdot g \cdot r \cdot \cos(\theta)$$

Symbolically solve for v: Place cursor at 'v', select Symbolics --> Variable --> Solve

$$\left[\begin{array}{c} -\sqrt{-2\cdot g\cdot r\cdot \left(\cos(\theta 0)-\cos(\theta)\right)} \\ \sqrt{-2\cdot g\cdot r\cdot \left(\cos(\theta 0)-\cos(\theta)\right)} \end{array}\right]$$

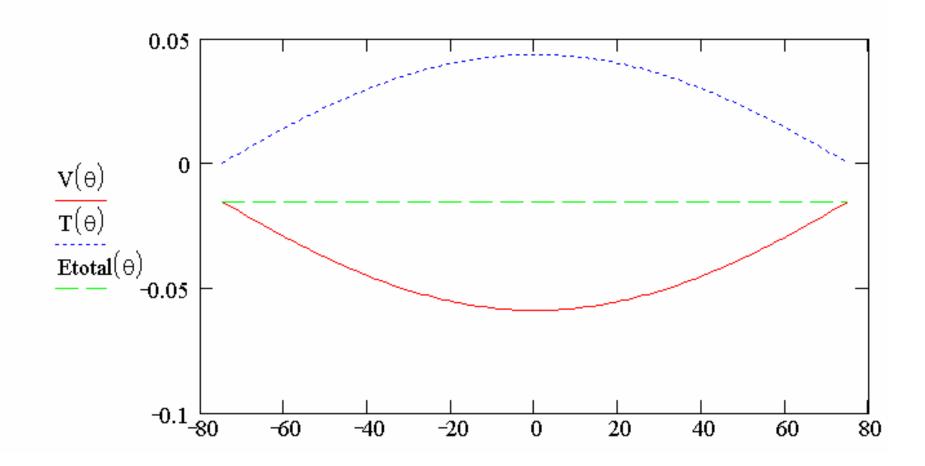
θ in radians!!

Motion of sliding block.

$$\theta := -75 \cdot \frac{\pi}{180}, -74 \cdot \frac{\pi}{180} ... 75 \cdot \frac{\pi}{180} v(\theta) := \sqrt{-2 \cdot g \cdot r \cdot (\cos(\theta 0) - \cos(\theta))}$$

$$T(\theta) := \frac{1}{2} \cdot m \cdot v(\theta)^2 \qquad V(\theta) := - \big(m \cdot g \cdot r \cdot \cos(\theta) \big) \qquad \qquad Etotal(\theta) := V(\theta) + T(\theta)$$

$$Etotal(1) = -0.015$$

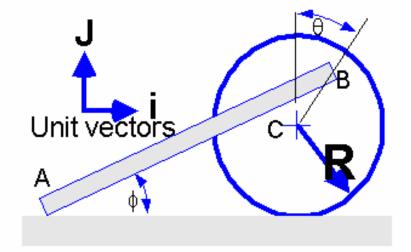


C14-68: Oscillating Arm

Arm AB is attached to the rolling wheel, causing AB to oscillate.

Find ω_{AB} and v_A

Data:



$$vC := 1.2$$
 $AB := 1$ $BC := 0.25$ $r := 0.3$

Equations:

$$t := 0, 0.1..3$$
 om $:= \frac{vC}{r}$ theta(t) $:= om \cdot t$

$$phi(t) := asin\left(\frac{r + BC \cdot cos(theta(t))}{AB}\right)$$

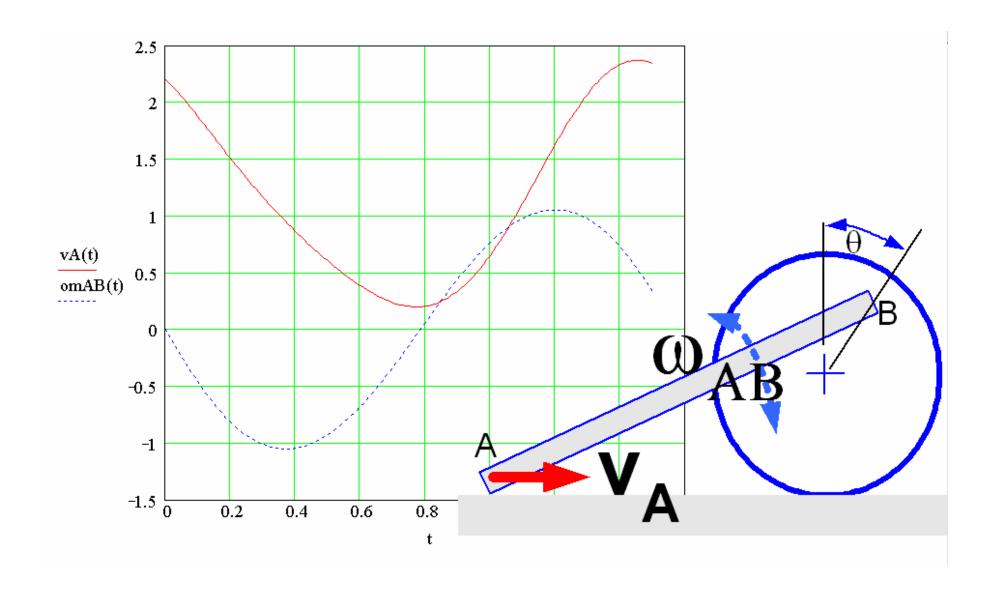
Dynamic system analysis example

Mathcad can find the solution by symbolic Equation solving:

$$omAB(t) := \frac{-1}{\sqrt{1 - r^2 - 2 \cdot r \cdot BC \cdot cos \left(\frac{vC}{r} \cdot t\right) - BC^2 \cdot cos \left(\frac{vC}{r} \cdot t\right)^2}} \cdot BC \cdot \frac{vC}{r} \cdot sin \left(\frac{vC}{r} \cdot t\right)$$

$$vA(t) := -vC \cdot \left(r + BC \cdot cos\left(\frac{vC}{r} \cdot t\right)\right) \cdot \frac{\left(-\sqrt{1 - r^2 - 2 \cdot r \cdot BC \cdot cos\left(\frac{vC}{r} \cdot t\right) - BC^2 \cdot cos\left(\frac{vC}{r} \cdot t\right)^2 + BC \cdot sin\left(\frac{vC}{r} \cdot t\right)\right)}{\left(\sqrt{1 - r^2 - 2 \cdot r \cdot BC \cdot cos\left(\frac{vC}{r} \cdot t\right) - BC^2 \cdot cos\left(\frac{vC}{r} \cdot t\right)^2 \cdot r}\right)}$$

Dynamic system analysis example



Dynamic system analysis example

What is in it for me?

Yes, you will have to get used to the constraints imposed by the software. This will pass.
All learning is an investment for your future.

What is in it for me?

Benefits: You will be Faster More Efficient More accurate. **Better presentation** Time is money.

What is in it for me?

Tools such as Mathcad allow you to create:

- Better presentations
- Accurate results.
- •Better design choices (play what if? scenarios)

Conclusion Chapter 3

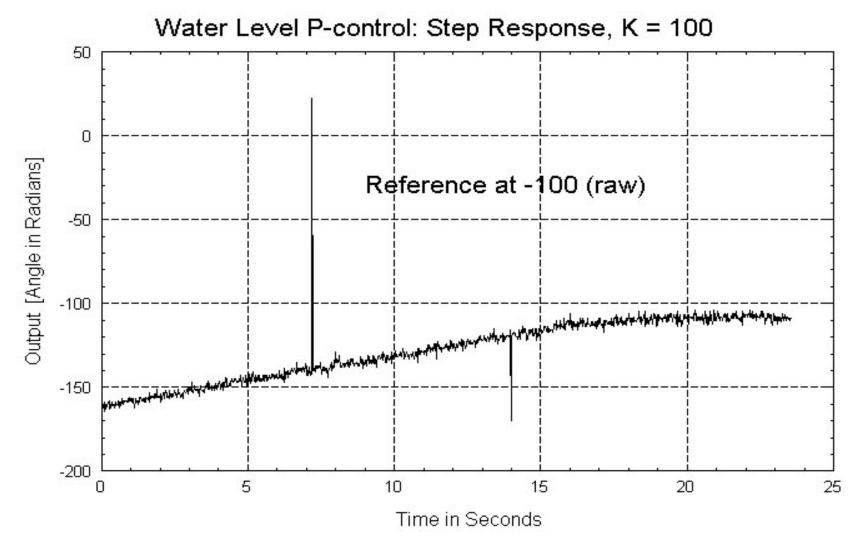
Plan for the long term. **Become familiar with those** tools that will make you the most productive. Your investment will pay off handsomely.

Chapter 4 Representation of Technical Information

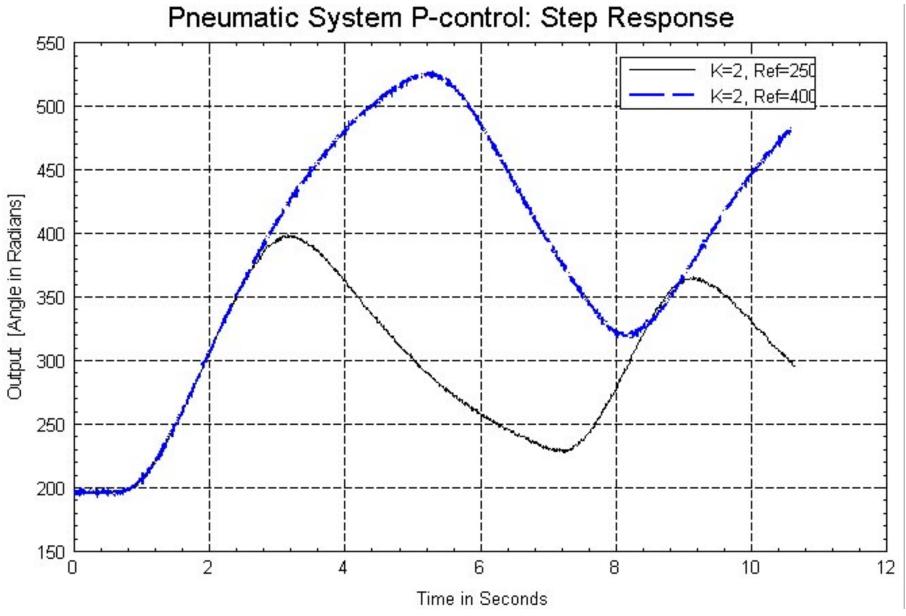
A Typical Scenario

We collected data in an experiment.

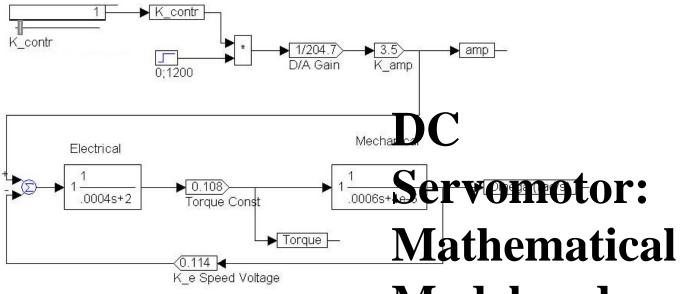
- •The data set might consist of a list, such as the one on page 143 in your book, or a computer data file.
- •We plot the data.

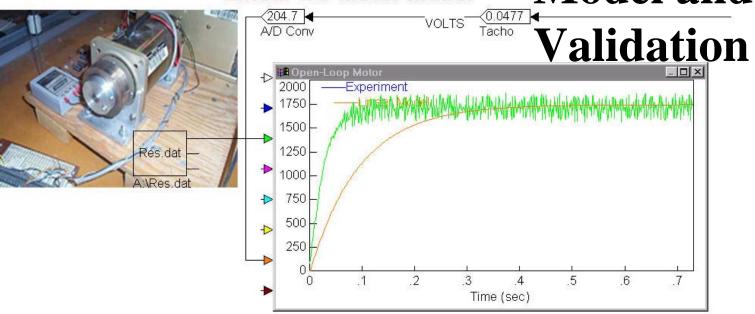


A Problem: Noisy Data (Noise often results from poor quality measurements, or from interference (just try AM radio)



How good is this control?





Engineers must

Collect Information(Data)

- Create Records
- •Analyze and display the information (e.g identify trends, create a mathematical model

The following test scores were earned by a class of first-year engineering students on a physics test.

40	70	77	80	85	59	90	67	47	70	
87	61	73	88	70	58	70	67	62	75	*1
65	90	58	69	99	83	63	72	95	62	
79	80	68	100	75	58	69	60	72	88	
64	52	65	77	72	70	31	93	79	72	
•										

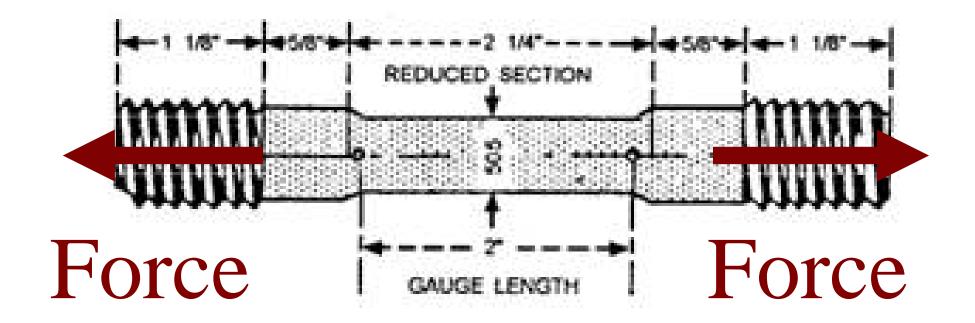
A set of data

An Example:

A sorted set of data from Tensile Testing of Materials

A Tensile Testing Machine

Material samples are inserted and the force to break the sample apart is recorded.



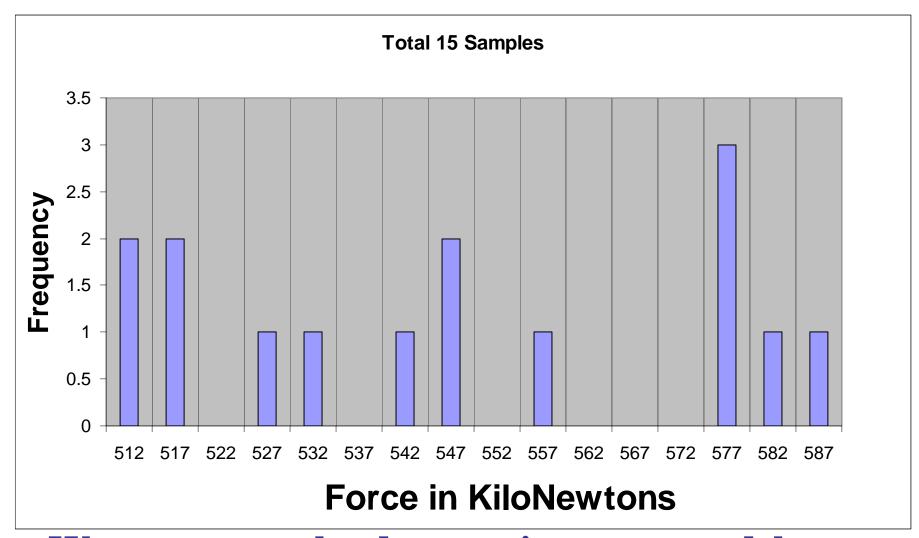
First Column:

Force (in Kilo-Newtons) required to break the sample

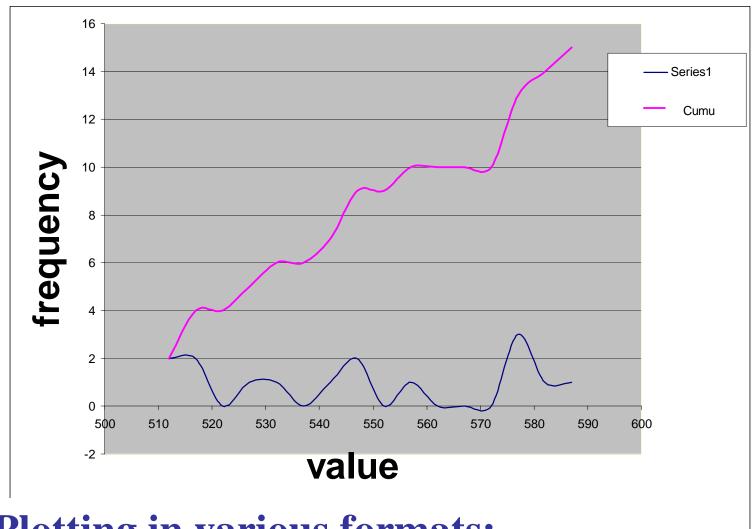
Force	Number
512	2
517	2
522	0
527	1
532	1
537	0
542	1
547	2
552	0
557	1
562	0
567	0
572	0
577	3
582	1
587	1

Second Column:

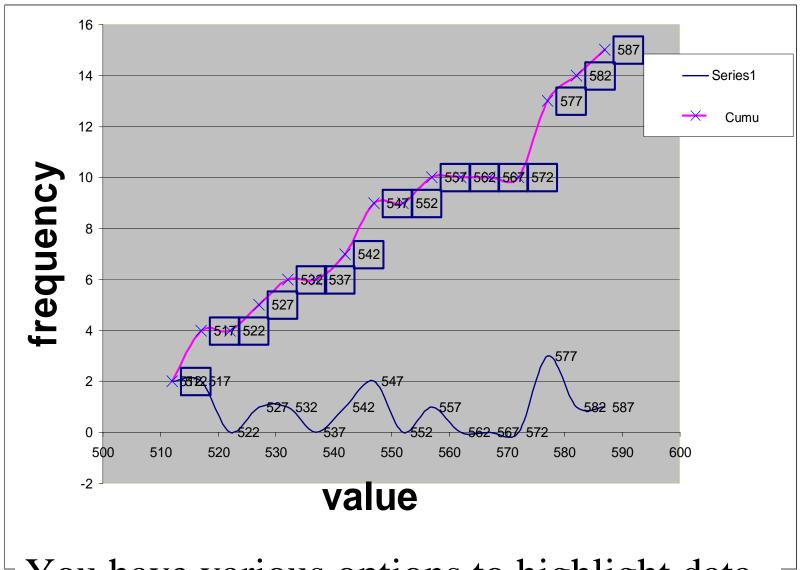
Number of samples broken at the respective Force Level



We can enter the data set into a spreadsheet program such as MS Excel, and plot the information in various formats.



Plotting in various formats: Same data, Line graph (in blue) Cumulative (adding all samples) in red



You have various options to highlight data. Explore them and find out what works best.

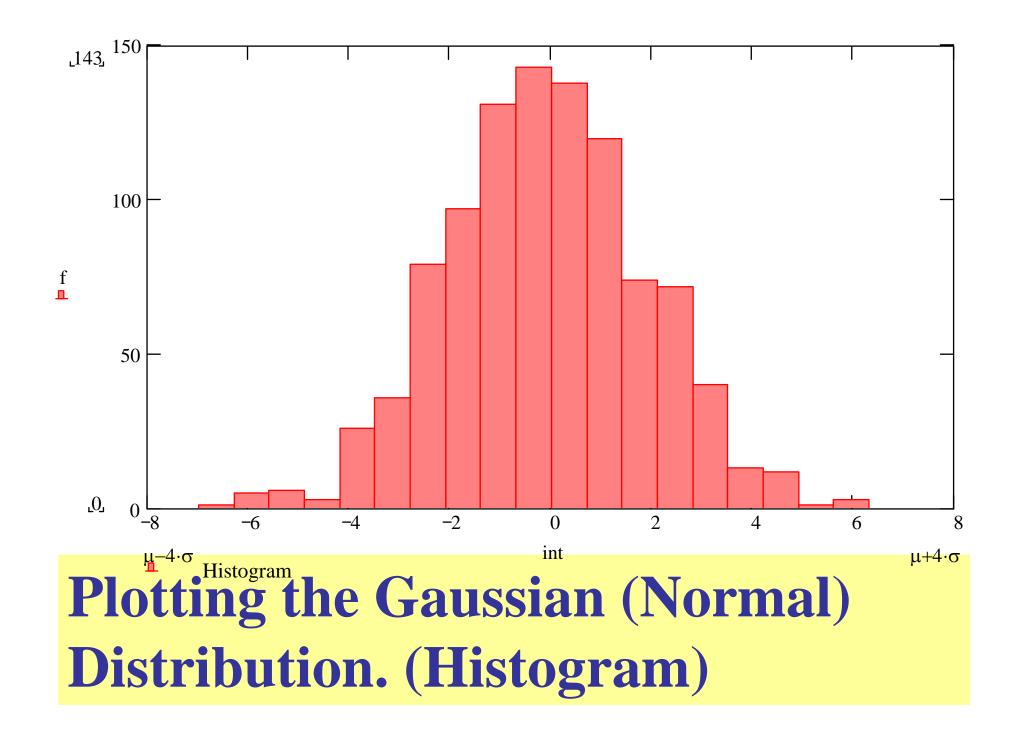
For your Homework assignment:
Please use spreadsheet software or Mathcad!
Explore the best options to present the information, and submit

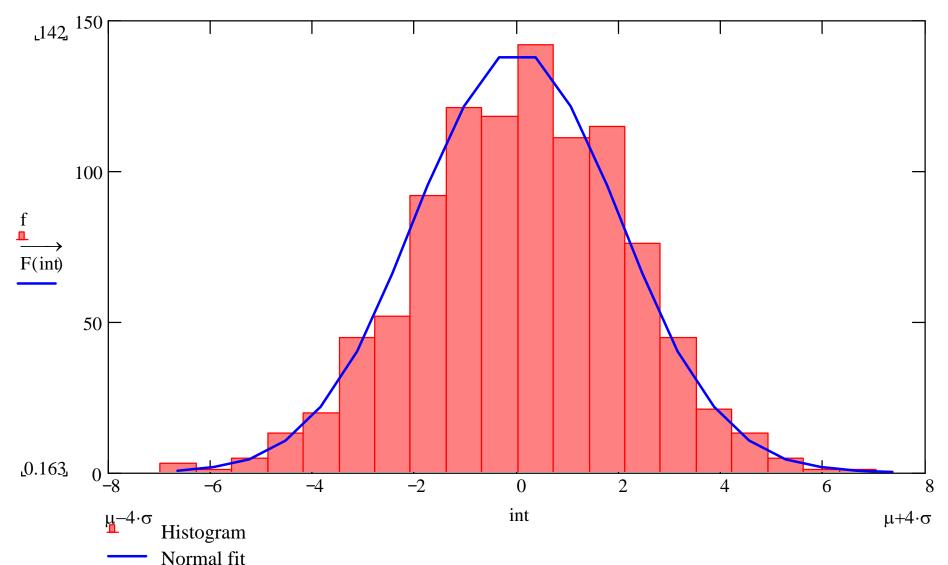
Mathcad Example:

A Gaussian (Normal) Distribution.

The numbers are shown at right.

	0		
0	1		
1	5		
2	6		
3	3		
4	26		
5	36		
6	79		
7	97		
8	131		
9	143		
10	138		
11	120		
12	74		
13	72		
14	40		
15	13		





Compute the Normal Distribution.
(Blue Line)

Mathcad Commands:

Gaussian Fitting Function:

$$F(x) := n \cdot h \cdot dnorm(x, \mu, \sigma)$$

For help in Mathcad, see Quick sheets → Statistics

Chapter 4.2 Collecting Data

- •Manual (slow, inefficient, error-prone. don't waste your time! Sometimes, of course, manual recording of data is expedient)
- •Computer assisted (typically faster and more accurate) You can also buy special recorders (data loggers) that record very large quantities at very high rates.

Example:

During Nuclear testing at the Nevada Test Site, all data must be collected within about 100 nanoseconds after triggering. The instrumentation is destroyed by the explosion

Plotting Experimental Data:

A set of x/y data

$\mathbf{x} =$	y(x) =
4 A	<i>J</i> (12)

9

10

9.871 11.09 15.714 17.364 21.608 22.117 27.808 28.495 31.351 34.355

Plotting Experimental Data: Basics

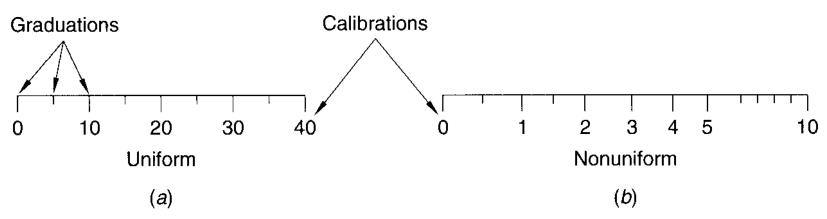
- •Present the information clearly and concisely!
- Each graph should speak for
- itself: Label the axes!

Descriptive Title!

Eide,
Page 155
Fig. 4.9

Scaling the Axes

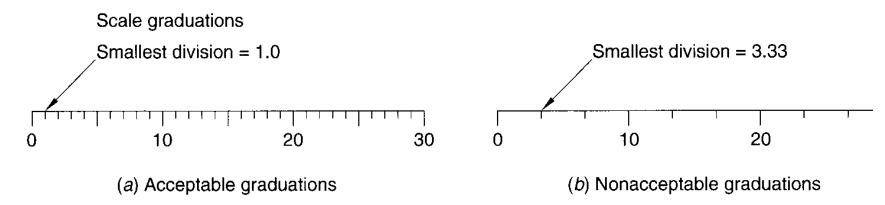
Figure 4.9



Scale graduations and calibrations.

Eide, Page 155 Fig. 4.10 Please Read and apply!

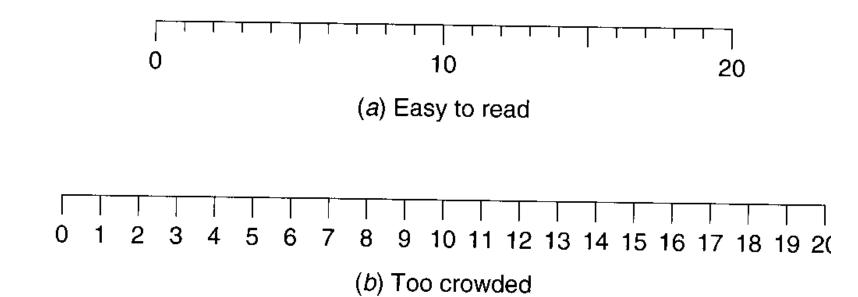
Figure 4.10



Acceptable and nonacceptable scale graduations.

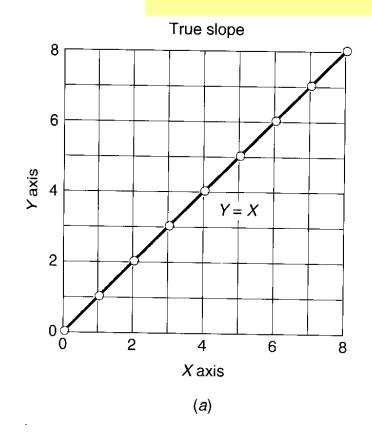
Axes Graduations

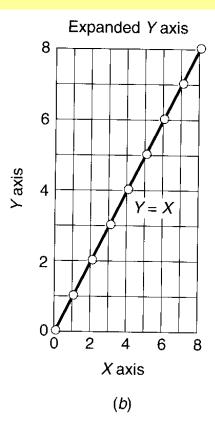
Eide,
Page 157
Fig. 4.12



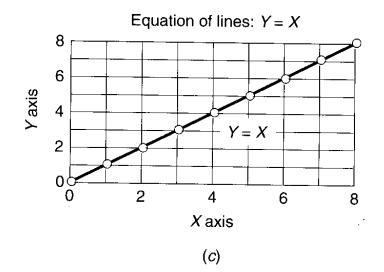
Acceptable and nonacceptable scale calibrations.

Eide, Page 157 Fig. 4.13 Proper Representation of Data You choose.

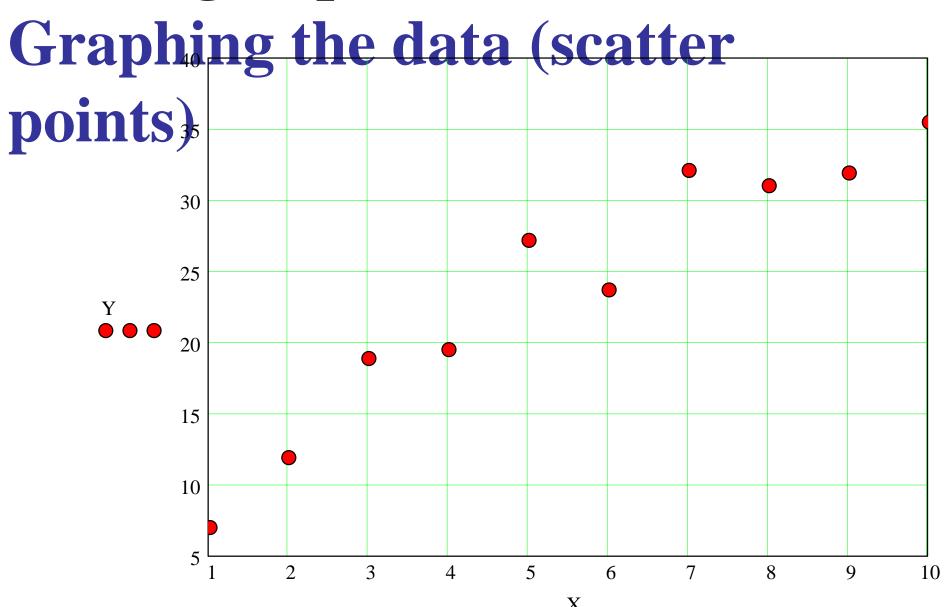




Expanded X axis



Plotting Experimental Data:

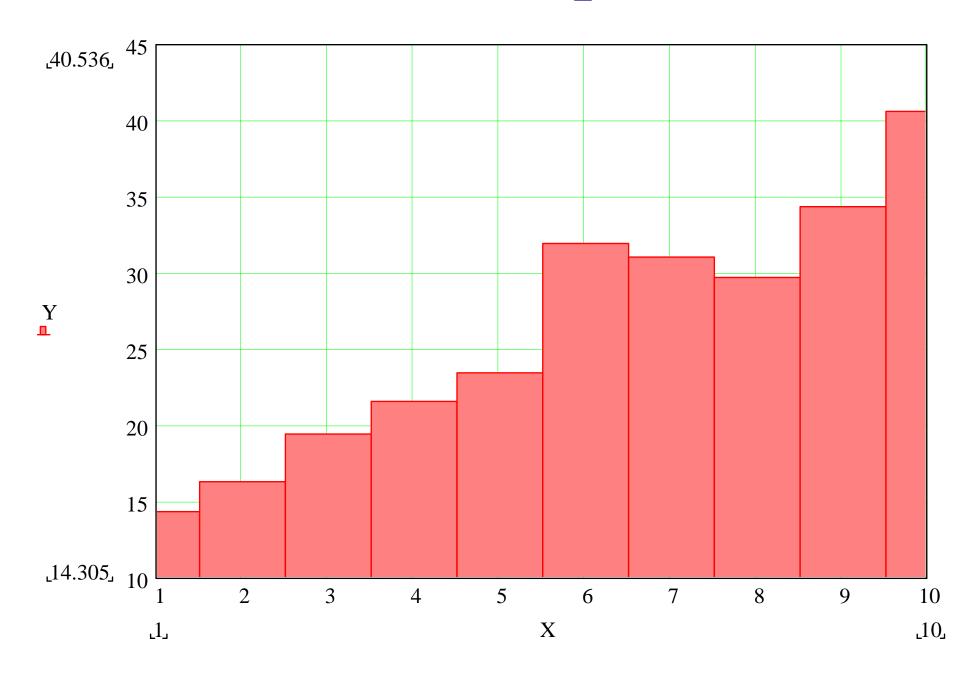


Plotting Experimental Data:

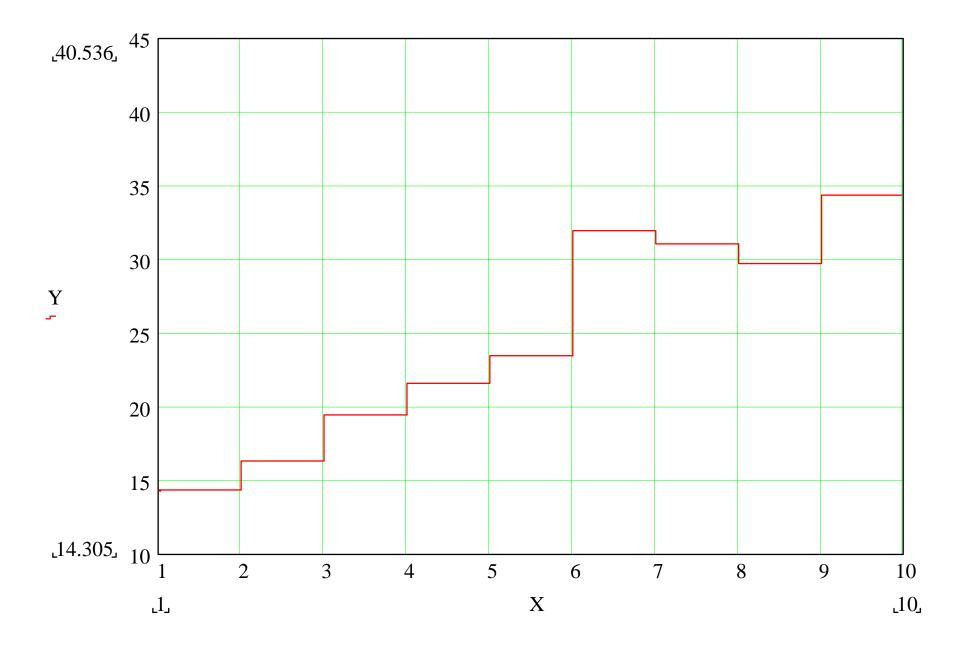
Graphing the data (data points



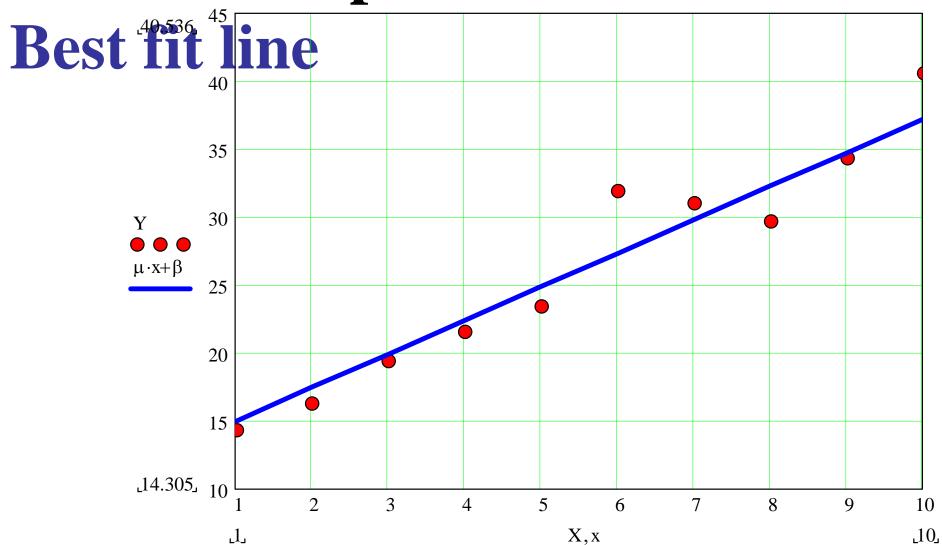
We can use Bar Graphs



..Or steps

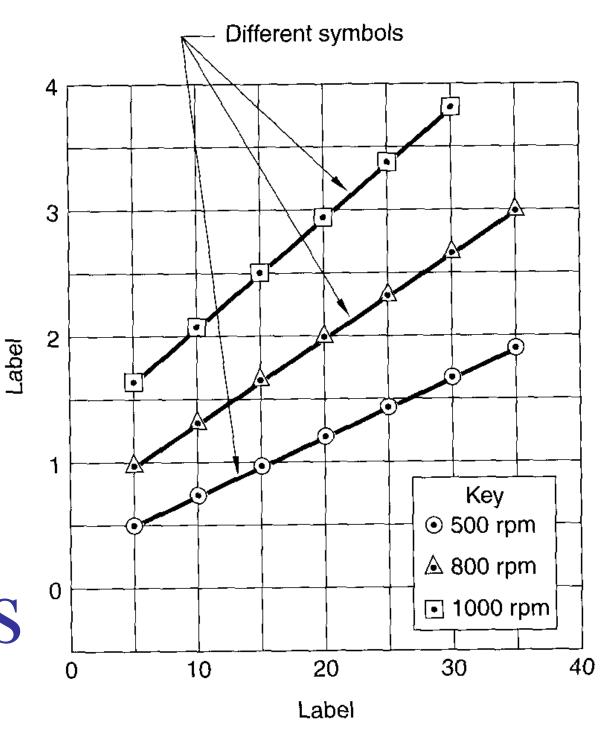


Linear Interpolation:



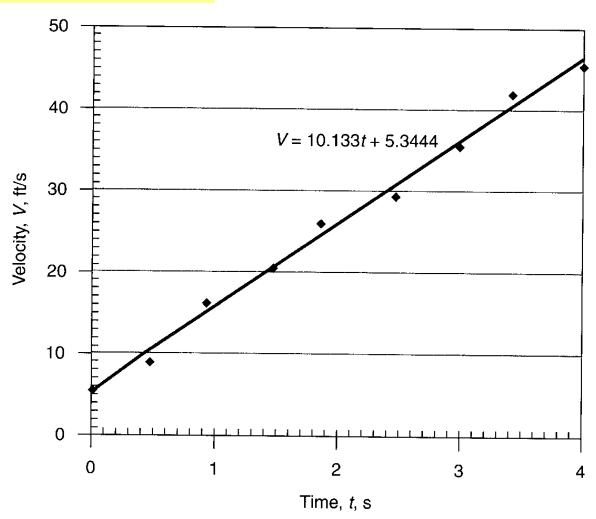
Eide,
Page 161
Fig. 4.21

Multiple Data Sets



Eide, Page 163 Fig. 4.23

Spreadsheet Rules



Necessary steps to follow when using a computer-assisted alternative:

- 1. Record via keyboard or import data into spreadsheet.
- **2.** Select independent (*x* -axis) and dependent variable(s).
- **3.** Select appropriate graph (style or type) from menu.
- **4.** Produce trial plot with default parameters.
- **5.** Examine (modify as necessary) origin, range, graduation, and calibrations: Note, use the 1, 2, 5 rule.
- 6. Label each axis completely.
- **7.** Select appropriate plotting-point symbols and legend.
- 8. Create complete title.
- 9. Examine plot and store the data.
- 10. Plot or print the data.

EXCEL spreadsheet hard copy of data displayed in Fig. 4.22.

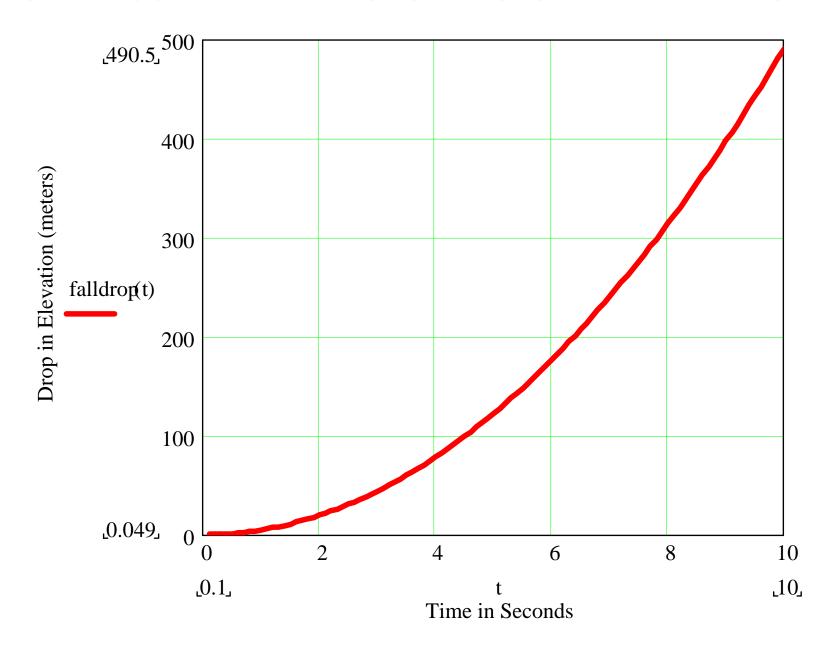
Plotting Experimental Data: A Quadratic Function (free fall)

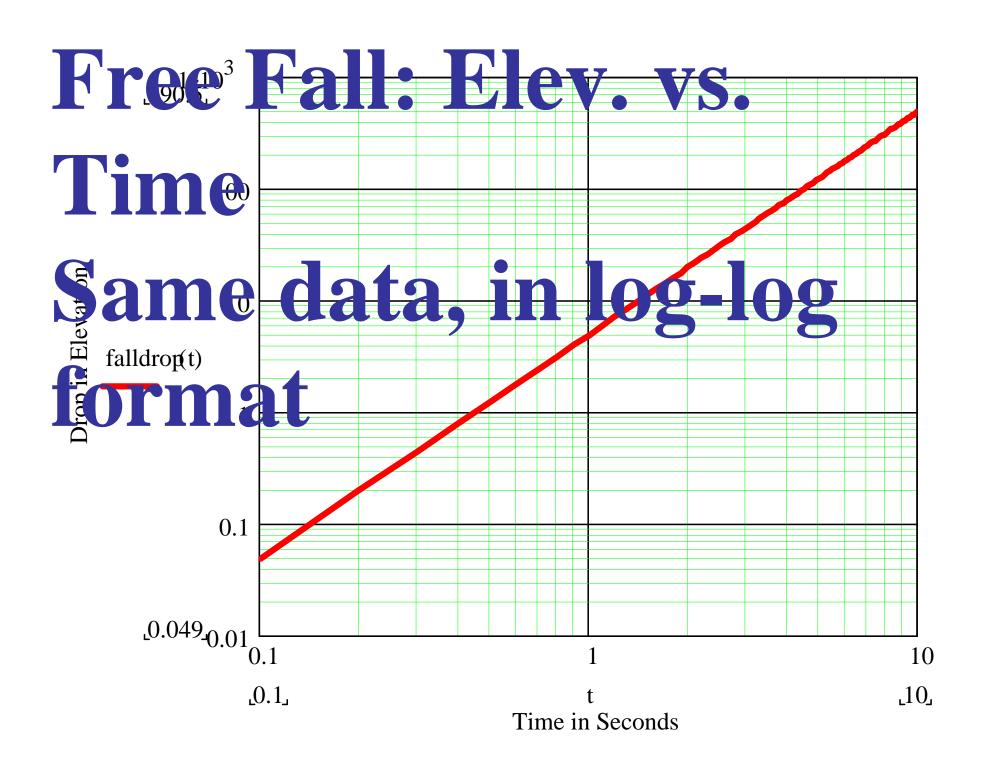
The falling distance is proportional to $time^2$

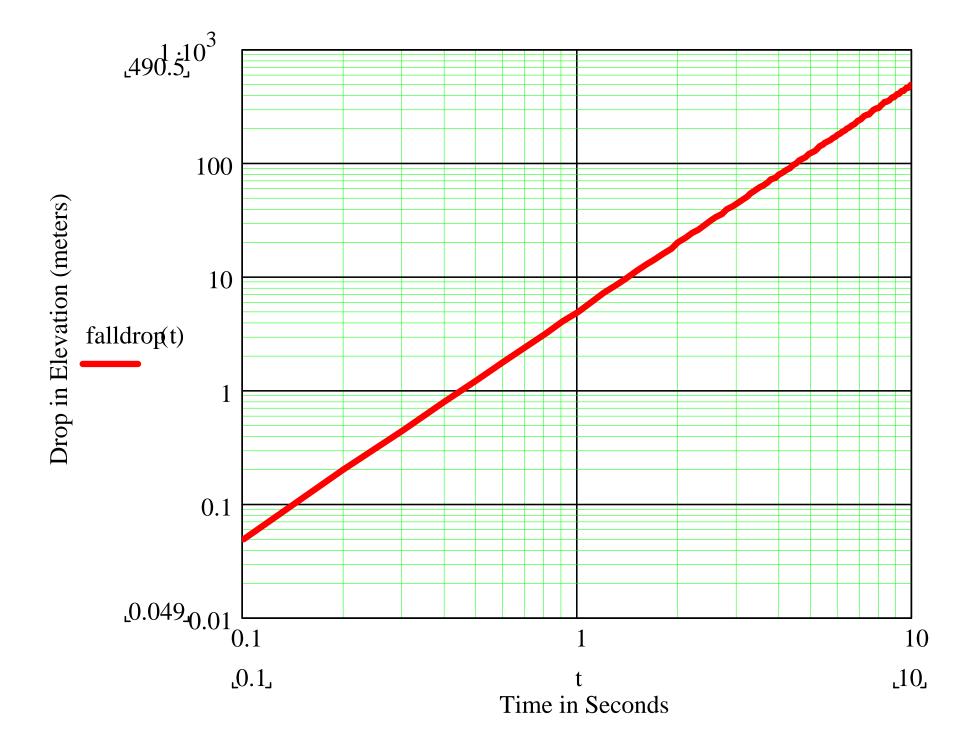
$$t := 1, 2... 10$$

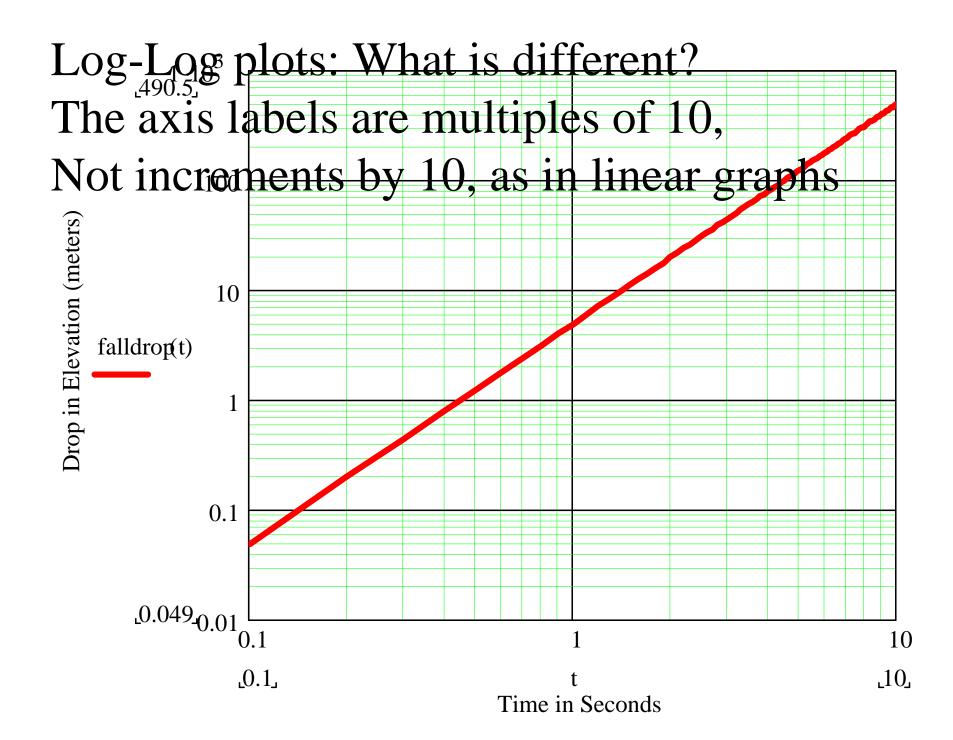
falldrop(t) :=
$$\frac{1}{2} \cdot g \cdot t^2$$

Free Fall: Elev. vs. Time









use the general form of the equation

Eide,

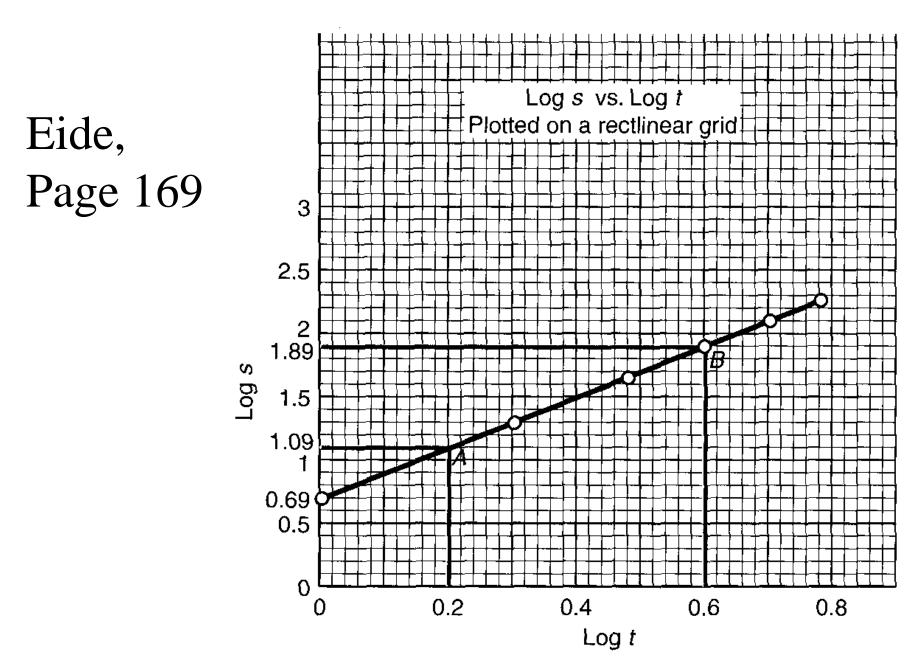
 $\frac{1}{\text{Page 168}}\log y = m\log x + \log b$

Points A and B can now be substituted into the $\log s = m \log t + \log b$ and solved simultaneously.

$$1.89 = m(0.6) + \log b$$

$$1.09 = m(0.2) + \log b$$

$$m = 2.0$$



Plotting log of variables on rectilinear grid paper.

Log-Log plots: What is different?

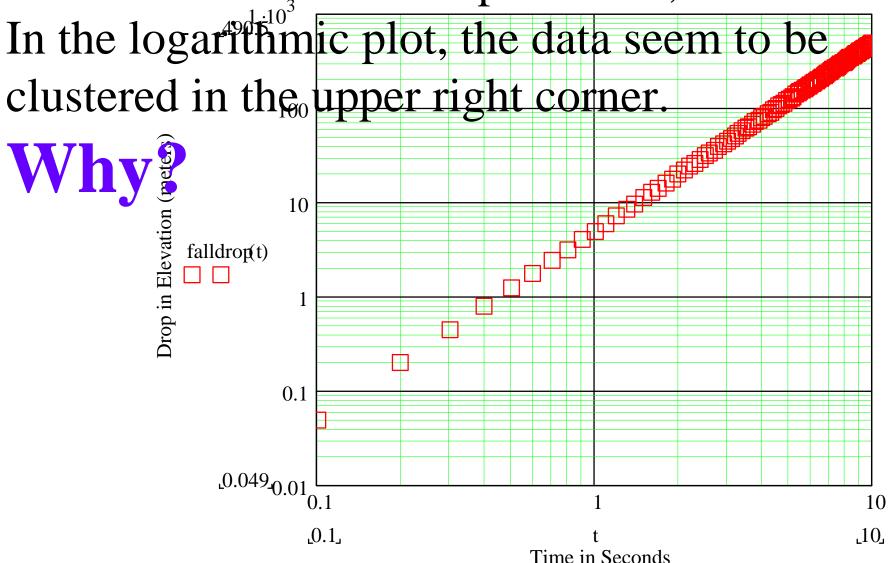
The axis labels are multiples of 10,

In the linear graph, the data were evenly distributed. 400 Drop in Elevation (meters) 300 falldrop(t) 200 100 $\lfloor 0.049 \rfloor$ 6 8 10 [0.1]ر10

Time in Seconds

Log-Log plots: What is different?

The axis labels are multiples of 10,

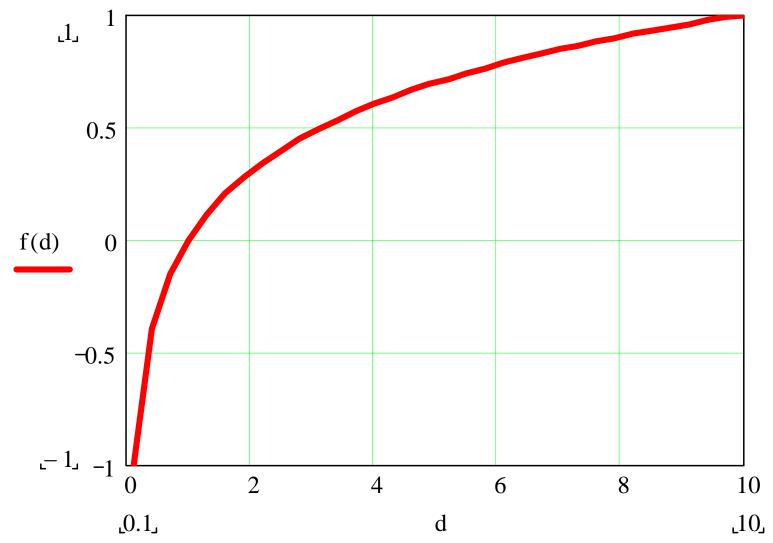


$$d := .1, .2.. 10$$

$$f(d) := log(d)$$

Ι ((a)	=
	-	1
	-0.39	8
•	-0.15	5
		0
	0.11	4
	0.20	4
	0.27	9
	0.34	2
	0.39	8
	0.44	7
	0.49	1
	0.53	1
	0.50	$\overline{\Box}$

 $f(\lambda)$ -



The (decadic) logarithm of 0.1 = -1. Log(1) = 0; Log(10) = 1

We can use logarithmic plots to test a data set for polynomial relationships. Look at these three polynomials:

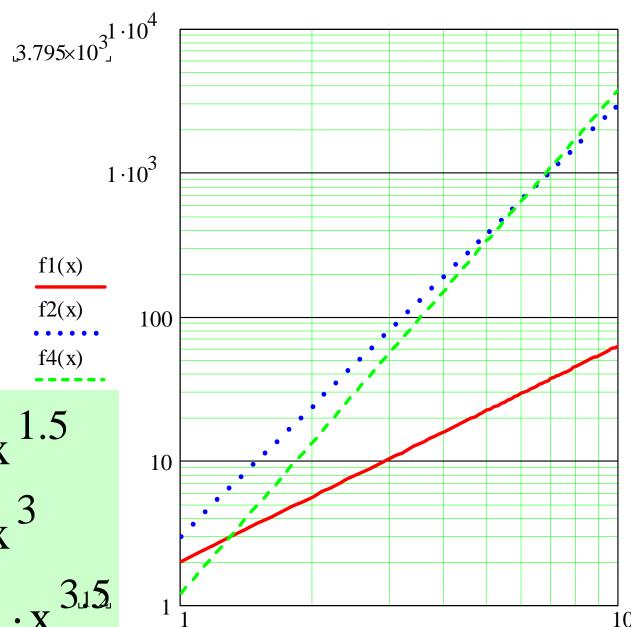
$$f1(x) := 2 \cdot x^{1.5}$$

$$f2(x) := 3 \cdot x^{3}$$

$$f4(x) := 1.2 \cdot x^{3.5}$$

Now graph the three polynomials in log-

log format:



 $f1(x) := 2 \cdot x^{1.5}$

 $f2(x) := 3 \cdot x^3$

 $f4(x) := 1.2 \cdot x^{3.15}$

We can use loglog graphing to identify patterns.

Example:

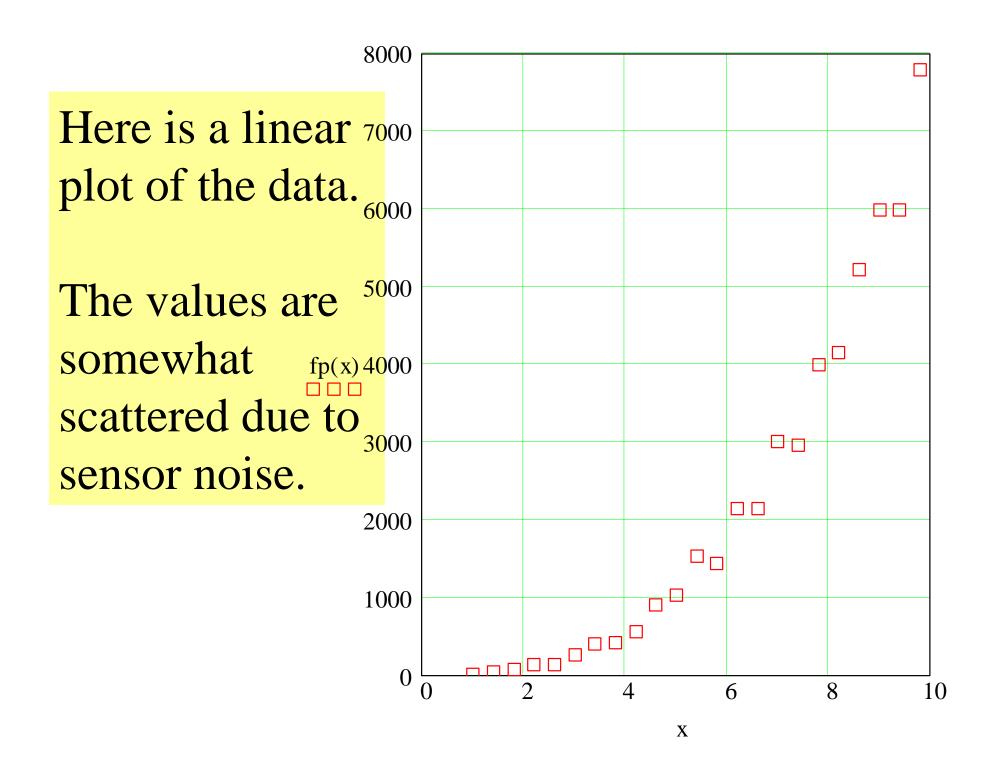
Testing the data
Set at right for
Polynomial
Properties.

x =
1
1.4
1.8
2.2
2.6
3
3.4
3.8
4.2
4.6
5
5.4
5.8
6.2

6.6

tp(x) =
20.085
30.624
73.481
94.966
222.621
269.297
298.011
514.174
612.635
833.211
1.231-10 ³
1.532·10 ³
1.625-10 ³
2.186·10 ³
2.226·10 ³
2.821·10 ³

 $f_n(x)$



Here is a loglog plot of the same data.

The values appear to follow a straight path.

15.401

