ROOT LOCUS CONSTRUCTION RULES

Rule \#1: The number of root locus branches is equal to the order of the characteristic equation. Each branch of the root locus begins at an open-loop pole $(\mathrm{K}=0)$ and ends at an open-loop zero or at a zero at infinity $(\mathrm{K} \rightarrow \infty)$. The root locus is always symmetric with respect to the real axis.

Rule \#2 (Real axis RL): For $K>0$, the root locus lies on a section of the real axis if the number of finite poles and zeros to the right of the section is odd.

Rule \#3 (Imaginary axis crossings): If branches of the root locus cross the imaginary axis, the locations of the crossings, $j \omega=j \omega_{1}$, and the values of the gain K at the crossing points can be found by using the Routh array. The value of K at each crossing will be the value that makes an entire row of the Routh array equal to zero. The crossing points j ω_{1} will be the roots of the auxiliary equation using that value of K .
An alternate method of finding the values of K and $\omega 1$ is to form the closed-loop characteristic equation Char-eq(s) $=\operatorname{Den}(\mathrm{s})+\mathrm{K} * \operatorname{Num}(\mathrm{~s})=0$. The variable s is replaced by $\mathrm{j} \omega$, and the resulting expression is separated into its real and imaginary parts. At the imaginary axis crossing of the closed-loop pole, the real and imaginary parts of $\Delta \mathrm{CL}(\mathrm{j} \omega)$ must each be zero:
$\operatorname{Re}\left(C h a r _e q(j \omega)\right)=0$ and $\operatorname{Im}\left(C h a r _e q(j \omega)\right)=0$. The two equations can be solved for K and ω_{1}.
Rule \#4 (Asymptotes): There will be $\mathrm{n}-\mathrm{m}$ branches of the Root Locus as $\mathrm{K} \rightarrow \infty$. For large K , they the root locus branches going to infinity will follow asymptotes that meet at a common point on the real axis, and form specified angles with respect to the positive real axis. The angles of asymptotes, $\varphi \mathrm{A}$, and the center of asymptotes, $\sigma \mathrm{A}$, are given by

$$
\varphi_{\mathrm{A}}=\begin{aligned}
& (2 \mathrm{r}+1)^{*} \pi \\
& --------------\quad . \\
& \left(\# p_{i}\right)-\left(\# \mathrm{z}_{\mathrm{i}}\right)
\end{aligned}
$$

$$
\boldsymbol{\sigma}_{\boldsymbol{A}}=\frac{\Sigma\left(\mathrm{p}_{\mathrm{i}}\right)-\Sigma\left(\mathrm{z}_{\mathrm{i}}\right)}{\left(\# p_{\mathrm{i}}\right)-\left(\# \mathrm{z}_{\mathrm{i}}\right)}
$$

where p_{i} and zi_{i} are the open-loop pole and zero locations, respectively. Complex poles and zeros are included in the calculation of σ_{A}.

Rule \#5 (Breakaway Points): For $K>0$, the root locus breaks away from the real axis at points of relative maximum K and re-enters the real axis at points of relative minimum K. i.e., breakaway and re-entry occur at points s_{B} where

$$
\left.\frac{d K}{d s}\right|_{s=s_{B}}=0
$$

See your textbook book for additional rules.

