

Definition of Automation

- "Having the capability of starting, operating, moving, etc., independently."
- "The use of machines to perform tasks that require decision making."

Open Loop Control Systems Example: Batch Filling

Block Diagram for Feedback

England - Eighteenth Century AD Watt Steam Engine

England - Eighteenth Century AD

Olympia on Youtube:
http://www.youtube.com/watch?v=s XK3pUdBRGA

Control Systems

Closed-loop control.
Benefits:

- System corrects "errors" (e.g. your fridge corrects for temperature variations due to door openings and other events.)
-Labor saving
Drawbacks:
- More expensive and complex.
- Need for sensors
- System can become unstable

Control System Example:

Inverted Pendulum

The Problem: The cart with an inverted pendulum is "bumped" with an impulse force, F. Determine the dynamic equations of motion for the system, and find a controller to stabilize the system.

Control System Example:
Inverted Pendulum

Force analysis and system
equations

At right are the two Free
Body Diagrams of the system.

Control System Example:
 Inverted Pendulum

After some mathematical analysis, the controller stabilizes the inverted pendulum:

Control System Example:
Inverted Pendulum
Without control we get the velocity response shown below, i.e. the pendulum falls to one side and the system is unstable.

Control System Example: Inverted Pendulum

We can make the system respond faster, but it will oscillate more:
If we drive the controller gain too high, the system will become unstable.

I-clicker Question 1

Closed-loop control is used to
(A) Read measurement data from a process
(B) Keep Temperatures constant
(C) Maintain a process variable as closely as possible to a desired reference.
(D) Compare a process output with a reference

No lab the first week

Contact hours: MW after class

HW: Submit in class
I-Clicker question Topics: Closed loop definitions, Transfer function, incl. computation.

Practice!

The Future: More Automation.
Manufacturing

...Remember the poor poet who fell in love with the robot doll?
'Love' is reality for many Aibo owners who seem to think that their robot loves them.

Quoted from: NY
Times, May2, 2002

DIANE wasn't well. Her owner, Harry Brattin, placed a white muffler around her neck. She sat quietly on a metal desk in the meeting room while the others scampered around the floor playing.
"I get very sad when one of my dogs gets ill," said Mr. Brattin, 63, a motorcycle dealer from San Diego. "When Diane's head stopped moving I felt bad. I truly felt grief."
Diane is an Aibo, a computer-controlled robot made by Sony, and D.H.S. is Droopy Head Syndrome, which is caused when a clutch wears out (it's repairable by replacing the head). Weird, perhaps, but not unusual.

Control Systems in Entertainment

Chapter 2: Dynamic Models

Differential Equations in
State-Variable Form

State-Variables: Example
$\sqrt[m]{n}$

- x is the variable that describes any arbitrary position of the system (also called system variable)
- x and \dot{x} are the state-variables of the system.
- Since $\dot{x}=v$, the state-variables can be defined as x and

State-Variable Form

Deriving differential equations in state-
variable form consists of writing them as a vector equation as follows:

$\dot{X}=F X+G u$
where $y=H X+J u$ is the output
and $u \quad$

Deriving the State Variable Form requires to specify F, G, H, J for a

I-clicker Question 1

A necessary part of any Closed-loop control is
(A) Negative Feedback of the controlled variable, y
(B) Positive Feedback of the controlled variable, y
(C) Negative Feedback of the Disturbance, w
(D) Positive Feedback of the Disturbance, w

Each element or 'Block' has one input and one output variable

Transfer Function

$$
G(s)=\frac{\text { Output(s) }}{\operatorname{Input}(s)} \text { e.g. }=\frac{Y(s)}{U(s)}
$$

Each element or 'Block' has one input and one output variable
Transfer Function
$\mathrm{G}(\mathrm{s})=\frac{\text { Output(s) }}{\operatorname{Input}(\mathrm{s})}$ e.g. $=\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{U}(\mathrm{s})}$
$\xrightarrow{U(s)=\text { 'Input' }} \xrightarrow[\mathbf{G}_{\text {plant }}]{ } \xrightarrow{Y(s)=\text { 'output }}$

Transfer Function

Example: System with Input var. $r(t)$,
Output var. $\mathrm{y}(\mathrm{t})$:
$4 \dot{y}+y(t)=r(t) \quad$ Laplace operator: $s=d / d t$
4 *s* $\mathrm{Y}(\mathrm{s})+\mathrm{Y}(\mathrm{s})=\mathrm{R}(\mathrm{s})$
Regroup:

I-clicker Question 3

A Transfer function, $\mathrm{T}(\mathrm{s})$ is defined as
(A) the initial values of a dynamic system
(B) the amplification or gain of a system
(C) The ratio Output/Input of the Laplace transform of an input-output differential equation
(D) The Laplace transform of the reference transmitted from the input to the output.
(E) The Laplace transform of the Feedback from the output to the Input

For instance, the plant in the preceding block diagram can be modeled as:

$$
\mathrm{G}_{\text {plant }}(\mathrm{s})=\mathrm{Y}(\mathrm{~s}) / \mathrm{U}(\mathrm{~s})
$$

I-clicker Question 4

Compare a differential equation (DE) with input u and output y , and its Transfer function, $\mathrm{T}(\mathrm{s})$:
(A) $\mathrm{T}(\mathrm{s})$ can be obtained from the DE , but we cannot reconstruct the DE from $\mathrm{T}(\mathrm{s})$
(B) $\mathrm{T}(\mathrm{s}$) can be obtained from the DE , and we can reconstruct the DE from $\mathrm{T}(\mathrm{s})$
(C) we can reconstruct the DE from T (s), but we must redefine the input and output variables
(D) T (s) must be inverted using Laplace transform rules. The result is the solution $\mathrm{y}(\mathrm{t})$.

i-CLICKER QUESTION 2.1

An Input-Output Diff. equ. (DE) is converted to State Variable format by
(A) Choosing one state each for the input and the output.
(B) Choosing as many states as the order of the DE, and writing a first order DE for each state.
(C) Grouping the output variable so that the input appears as a matrix

i-CLICKER QUESTION 2.2

The main advantage of State Variable DE's is:
(A) Neater Appearance.
(B) You can see the matrix symmetries better
(C) Easier Solution with Computers
(D) There is no advantage

Ex 1: Dynamic

 Model- Applying Newton's law for 1-D rotational motion leads

$$
\text { to: } F_{c} d+M_{D}=I \ddot{\theta}
$$

$$
\ddot{\theta}=\frac{F_{C} d+M_{D}}{I}
$$

Strategy (recommended but not

 required)1. Derive the dynamic model
2. Identify the input control variable, denoted by u.
3. Identify the output variable, denoted by y.
4. Define a state vector, X, having for elements the system variables and their first derivative.
5. Determine \dot{X}
6. Determine F and G, in manner that $\dot{X}=F X+G u$
7. Determine H and J, in manner that $y=H X+J u$

Example 1 (cont'd)

- By definition: $\dot{\theta}=\omega$. Thus, $\ddot{\theta}=\dot{\omega}$
- Expressing the dynamic model:

$$
\ddot{\theta}=\frac{F_{c} d+M_{D}}{I}
$$

(1)
as a function of ω and u (with $u=F_{c} d+M_{D}$) yields:

$$
\dot{\omega}=\frac{u}{I}
$$

Example 1: Dynamic Model in State-Variable Form

Analysis in Control Systems

- Step 1: Derive a dynamic model
- Step 2: Specify the dynamic model for software by writing it $\xrightarrow{\text { either }}$
in STATE-VARIABLE form
$\xrightarrow{\text { or }}$
in terms of its TRANSFER
FUNCTION (see chapter 3)

Example 2: Cruise Control Step Response

- Q1: Rewrite the equation of motion in state-variable form where the output is the car velocity v ?
- Q2: Use MATLAB to find the step response of the velocity of the car ?
Assume that the input jumps from being $u(t)=0 N$ at time $t=0$ sec to a constant $u(t)=500 \mathrm{~N}$ thereafter.

Reminder: Strategy

1. Derive the dynamic model.
2. Identify the input control variable, denoted by u.
3. Identify the output variable, denoted by y.
4. Define a state vector, X, having for elements the system varæ̈bles and their first derivative.
5. Determine
6. Determine F and G, in manner that $\dot{X}=F X+G u$
7. Determine H and J, in manner that $y=H X+J u$

Ex 2, Clicker Q2.5:Dynamic Model

- Applying Newton's law for translational motion yields:
- (a) $b \dot{x}+u=m \ddot{x}$
-(b) $b \dot{x}=m \ddot{x}+u$
- (c) $-b \dot{x}+u=m \ddot{x}$
- (d) $-b \dot{x}-u=m \ddot{x}$

Ex 2, Q1:Dynamic Model

- Applying Newton's law for translational motion yields:
-(c) $-b \dot{x}+u=m \ddot{x}$
$\Rightarrow \quad \ddot{x}=-\frac{b}{m} \dot{x}+\frac{u}{m}$
(2)

Example 2, Question 1 (cont'd)

I-clicker question 2.6

The top row of the Fmatrix at left is:
(A) $1 \quad 1$
(B) 10
(C) $0 \quad 1$
(D) $0 \quad 0$
$X=\left[\begin{array}{l}x \\ v\end{array}\right]$ with $v=\dot{x}$

Known: The dynamic model

$$
\begin{equation*}
\ddot{x}=-\frac{b}{m} \dot{x}+\frac{u}{m} \tag{2}
\end{equation*}
$$

Required: Rewrite (2) as:

and $u=$

Example 2 (cont'd)

- By definition: $\dot{x}=v$. As a result, $\ddot{x}=\dot{y}$
- Expressing the dynamic model:

$$
\ddot{x}=-\frac{b}{m} \dot{x}+\frac{u}{m}
$$

(2)
as a function of v and u leads to:

$$
\dot{v}=-\frac{b}{m} v+\frac{u}{m}
$$

Example 2, Question 1: Dynamic Model in State-Variable Form

By defining X as:
The state-variable form results as:
$X=\left[\begin{array}{l}x \\ v\end{array}\right]$
$F=\left[\begin{array}{cc}0 & 1 \\ 0 & -b / m\end{array}\right] \quad G=\left[\begin{array}{c}0 \\ 1 / m\end{array}\right]$
$H=\left[\begin{array}{ll}0 & 1\end{array}\right] \quad J=0$

Example 2, Question2: Step Response using MATLAB?

Assumptions: $m=1000 \mathrm{~kg}$ and $b=50 \mathrm{~N} . \mathrm{sec} / \mathrm{m}$.

$$
\begin{aligned}
& F=\left[\begin{array}{cc}
0 & 1 \\
0 & -0.05
\end{array}\right] \quad G=\left[\begin{array}{c}
0 \\
0.001
\end{array}\right] \\
& H=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad J=0
\end{aligned}
$$

Ex 2, Q2: Step Response with MATLAB?

- The step function in MATLAB calculates the time response of a linear system to a unit step input.
- In the problem at hand, the input u is a step function of amplitude 500 N :
$u=500 *$ unity $_{\bar{X}}$ tep function.
- Because the system is linear (
): $G * u=(500 * G) *$ unity step function G * Step 0 to $500 N \longrightarrow 500 * G$ * Step 0 to $1 N$

Response of the car velocity to a step input u of amplitude 500 N

