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GOALS: To provide advanced students 
in mechanical engineering with a 
solid background in dynamic system 
modeling and analysis and to enable 
them to analyze and design linear 
control systems.

FORMAT: 

Lecture: 3 credits

Lab: 1 credit

You must enroll in both MEG 421 and 
MEG 421L

MEG 421: 

Prerequisites by Topic:

1. Electrical Circuits 

2. Mathematics for Engineers. 

3. Analysis of Dynamic Systems

–Most General Definition:

To Produce a Desired Result

“Trust is good, control is better.”
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Definition of Automation

• “Having the capability of starting, 
operating, moving, etc., independently.” 1

• “The use of machines to perform tasks that 
require decision making.” 2

• Technical Control Systems

Open Loop Control Systems

Open Loop Control Systems
Example: Batch Filling

Block Diagram for Feedback 

(or Closed Loop)  Control

England - Eighteenth Century AD
Watt Steam Engine England - Eighteenth Century AD
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The accelerating technological 
change of the 19th century was 
reflected in literature and art. 

In Jacques Offenbach’s 
opera ‘Les contes
d’Hoffmann’ the hero falls 
in love with Olympia, a 
mechanical doll. 
Olympia can sing and 
dance. She needs rewinding 
every 5 minutes or so.

http://www.youtube.com/watch?v=s
XK3pUdBRGA

Olympia on Youtube:

Another famous 
example is 
Mary Shelley’s 
ever popular 
Frankenstein 
(1831).

Automation Today

The world

around us

Rapid Growth of Machine 
Intelligence Robots for Hazardous Areas
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Around the House

Warm 
And
Cuddly …

…or
Cyborg

Control Systems
Closed-loop control.
Benefits: 
• System corrects “errors” (e.g. your fridge
corrects for temperature variations due to
door openings and other events.)
•Labor saving
Drawbacks:
• More expensive and complex. 
• Need for sensors 
• System can become unstable 

Control System Example: 
Inverted Pendulum

The Problem: The cart with 
an inverted pendulum is 
"bumped" with an impulse 
force, F. Determine the 
dynamic equations of 
motion for the system, and 
find a controller to stabilize 
the system.

Control System Example: 
Inverted Pendulum

Force analysis and system 
equations

At right are the two Free 
Body Diagrams of the 
system.
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Control System Example: 
Inverted Pendulum

Equation of motion for the 
cart:

Equation of motion for the 
pendulum:

Control System Example: 
Inverted Pendulum

Without control we get the 
velocity response shown 
below, i.e. the pendulum 
falls to one side and the 
system is unstable.

Control System Example: 
Inverted Pendulum

The equation at 
right describes the 
four “States” of the 
system:
Cart Pos.  x
Cart Vel x-dt
Angle Phi
Ang. Vel. Phi-dt

Control System Example: 
Inverted Pendulum

Control Loop Schematic:
R = ‘reference’ = desired state
K = ‘state controller’

Control System Example: 
Inverted Pendulum

After some mathematical 
analysis, the controller 
stabilizes the inverted 
pendulum:

Control System Example: 
Inverted Pendulum

We can make the 
system respond faster,  
but it will oscillate 
more:

If we drive the 
controller gain too 
high,  the system will 
become unstable.
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Control System Example: 
Inverted Pendulum

There is still a small 
problem:
The cart has wandered 
off too far. So we add a 
requirement to return to 
(almost) where it started:

I-clicker Question 1
Closed-loop control is used to

(A) Read measurement data from a process
(B) Keep Temperatures constant
(C) Maintain a process variable as closely 

as possible to a desired reference.
(D) Compare a process output  with a 

reference

The Airplane as Computer Peripheral

The Future of Aviation

No lab the first week

Contact hours: MW after class

HW: Submit in class
I-Clicker question Topics : Closed 

loop definitions, Transfer function, 
incl. computation.

Practice!

The Future: More Automation. 
Manufacturing 

“More Automation”
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Households and Service Industries:
Repetitive Jobs will be automated.

Robotic mower for
Golf courses.
(Carnegie-Mellon)

Medicine:
Robodoc (Surgical Robot for hip 

replacement)

Medicine
Prosthetics

Mobility 
Assistance

Artificial Intelligence
With better brains and sensors, 
robots will interact better with 

humans, and perform more 
functions. 

Sony’s
‘Aibo’

…Remember the poor poet who 
fell in love with the robot doll?

‘Love’ is reality for many Aibo
owners who seem to think that 

their robot loves them.

Quoted from: NY 
Times, May2, 2002

DIANE wasn't well. Her owner, Harry Brattin, placed a white muffler 
around her neck. She sat quietly on a metal desk in the meeting room 
while the others scampered around the floor playing.
"I get very sad when one of my dogs gets ill," said Mr. Brattin, 63, a 
motorcycle dealer from San Diego. "When Diane's head stopped moving 
I felt bad. I truly felt grief."
Diane is an Aibo, a computer-controlled robot made by Sony, and D.H.S. 
is Droopy Head Syndrome, which is caused when a clutch wears out (it's 
repairable by replacing the head). Weird, perhaps, but not unusual. 
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Exploration Control Systems in Entertainment

Control 
Systems in 

Entertainment

Control Systems in 
Entertainment

Control Systems in 
Entertainment Control

Open-Loop,
Benefit:

• Simple, always stable
• Widely used in well-

defined situations, e.g. 
Batch filling

Closed-Loop
• Maintains desired 

output in the presence 
of disturbances

• Can become unstable



9

Feedback  Control 

ControllerSum
R(s) -

Actuator

(Brain) Power Unit

Actuator Output

Feedback  Control 

ControllerSum

Y(s)R(s) -
Gplant

Disturbance W(s)
+  or  -

Actuator

Process(Brain) Power Unit

U(s)

Actuator Output

Feedback  Control 
Chapter 2: Chapter 2: 

Dynamic ModelsDynamic Models

Differential Equations in 
State-Variable Form

State-Variables: Example 

• x is the variable that describes any arbitrary 
position of the system (also called system 
variable)

• are the state-variables of the 
system.

• Since             , the state-variables can be defined as 

⎩
⎨
⎧

=
=++

vx
ukxbvvm

&

&

vx =&

xandx &

vandx

Deriving differential equations in state-
variable form consists of writing them as 
a vector equation as follows:

uJXHy
uGXFX

+=
+=&

where is the output

and   u is the input

State-Variable Form
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Definitions

• is called state of 
the system.

• X is the state vector.
It contains n elements 
for an nth-order system, 
which are the n state-
variables of the 
system.

X&
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⎥
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⎦

⎤

⎢
⎢
⎢
⎢
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• The constant  J is called 
direct transmission term
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Important
You can 

forget that

Deriving the State Variable Form 
requires to specify F, G, H, J for a 

given X and u
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Feedback Terminology

In Block diagrams, we use not the time domain 
variables, but their Laplace Transforms. Always 

denote Transforms by (s)!

I-clicker Question 1
A necessary part of any Closed-loop control 

is

(A) Negative Feedback of the controlled 
variable, y

(B) Positive Feedback of the controlled 
variable, y

(C) Negative Feedback of the Disturbance, w
(D) Positive Feedback of the Disturbance, w

I-clicker Question 2
In a Closed-loop feedback system, the error 

is

(A) r - y
(B) y - w
(C) w - r
(D) y - w

ControllerSum

Ksensor

Y(s)R(s) -
Gplant

Disturbance W(s)
+  or  -

Actuator

Y is the 'Controlled
Output'

Sensor Output

Process(Brain) Power Unit

U(s)

Actuator Output

Each element or ‘Block’ has one 
input and one output variable

G(s) = Output(s)     e.g. =  Y(s)
      Input(s)            U(s)

Transfer Function
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Each element or ‘Block’ has one 
input and one output variable

G(s) = Output(s)     e.g. =  Y(s)
      Input(s)            U(s)

Transfer Function

Y(s)
GplantU(s)

For instance, the plant in the preceding block 
diagram can be modeled as:

Gplant(s) = Y(s) /U(s)

4y + y(t) = r(t)
.

Laplace operator: s = d/dt

4 *s*Y(s) + Y(s) = R(s)
Regroup:

Example: System with Input var. r(t),
Output var. y(t):

Transfer Function Transfer Function

4 *s*Y(s) + Y(s) = R(s)
Regroup:

Y(s)*(4s+1) = R(s)

Regroup:

Y(s)  =     1__
 R(s)     4s  + 1

I-clicker Question 3
A Transfer function, T(s) is defined as

(A) the initial values of a dynamic system
(B) the amplification or gain of a system
(C) The ratio Output/Input of the Laplace 

transform of an input-output differential 
equation

(D) The Laplace transform of the reference 
transmitted from the input to the output.

(E) The Laplace transform of the Feedback 
from the output to the Input

I-clicker Question 4
Compare a differential equation (DE)  with input u 

and output y, and its Transfer function, T(s):

(A) T(s) can be obtained from the DE, but we cannot 
reconstruct the DE from T(s)

(B) T(s) can be obtained from the DE, and we can 
reconstruct the DE from T(s)

(C) we can reconstruct the DE from T(s), but we 
must redefine the input and output variables

(D) T(s) must be inverted using Laplace transform 
rules. The result is the solution y(t).
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i-CLICKER QUESTION 2.1

An Input-Output Diff. equ. (DE) is converted to 
State Variable format by

(A) Choosing one state each for the input and the 
output.

(B) Choosing as many states as the order of the DE, 
and writing a first order DE for each state.

(C) Grouping the output variable so that the input 
appears as a matrix

i-CLICKER QUESTION 2.2

The main advantage of State Variable DE’s is:
(A)Neater Appearance.
(B) You can see the matrix symmetries better
(C) Easier Solution with Computers
(D)There is no advantage

Satellite Altitude 
Control Example

Q: Dynamic model 
in state-variable 

form?

Assumptions:
• ω is the angular velocity
• The desired system 

output is θ

Strategy (recommended but not 
required)

1. Derive the dynamic model.
2. Identify the input control variable, denoted by u.

3. Identify the output variable, denoted by y.

4. Define a state vector, X , having for elements the 
system variables and their first derivative.

5. Determine 
6. Determine F and G, in manner that

7. Determine H and J, in manner that 

X&
GuFXX +=&

JuHXy +=

Ex 1: Dynamic 
Model 

• Applying Newton’s law for 
1-D rotational motion leads 
to:

=> (1)

θ&&IMdF Dc =+

I
MdF DC +

=θ&&

Example 1 (cont’d)
Given:
• The control input, 

denoted by u, is given 
by:

• The output, denoted by 
y, is the displacement 
angle:  y = θ

Assumption:
• The state vector, 

denoted by X, is 
defined as:

Known: The dynamic 
model

(1)

Required: Rewrite (1) as:

DC MdFu +=

I
MdF DC +

=θ&&

{ { {
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⎣

⎡
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uand
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321
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ω
θ &=⎥
⎦
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⎣

⎡
= withX
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I-clicker question 2.3
The first row of the F-

matrix at left is:
(A) 1      1
(B) 1      0
(C) 0      1
(D) 0      0

Known: The dynamic 
model

(1)

Required: Rewrite (1) as:

I
MdF DC +

=θ&&

{ { {

[ ] {
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⎦
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uywhere

u
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ω
θ

ω
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ω
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⎢
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⎡
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I-clicker question 2.4
The bottom row of the F-

matrix at left is:
(A) 1      1
(B) 1      0
(C) 0      1
(D) 0      0

Known: The dynamic 
model

(1)

Required: Rewrite (1) as:
I

MdF DC +
=θ&&

{ { {
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Example 1 (cont’d)

• By definition:             .  Thus,  

• Expressing the dynamic model: 

as a function of ω and u  (with ) 
yields: 

ωθ =&

I
u

=ω&

I
MdF DC +

=θ&&

ωθ &&& =

Dc MdFu +=

(1)

Example 1 
(cont’d)

Available equations:

• From the dynamic 
model:

• The output y is defined 
as: y = θ

• The input u is given 
by:

Equivalent form of 
available eq:

where

DC MdFu +=

⎩
⎨
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⎧
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Example 1: Dynamic Model in 
State-Variable Form

[ ] 001

1
0

00
10

==

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

JH

I
GF

DC MdFu

X

+=

⎥
⎦

⎤
⎢
⎣

⎡
=

ω
θ

input
state-variables

By defining X and u as: The state-variable form is given by:

Analysis in Control Systems

• Step 1: Derive a dynamic model

• Step 2: Specify the dynamic model for 
software by writing it  

in STATE-VARIABLE form

in terms of its TRANSFER 
FUNCTION (see chapter 3)

either

or
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Example 2: Cruise Control Step 
Response

• Q1: Rewrite the 
equation of motion in 
state-variable form
where the output is the 
car velocity v ?

• Q2: Use MATLAB to find the step response of the 
velocity of the car ?
Assume that the input jumps from being u(t) = 0 N at time 
t = 0 sec to a constant u(t) = 500 N thereafter.

Reminder: Strategy

1. Derive the dynamic model.
2. Identify the input control variable, denoted by u.

3. Identify the output variable, denoted by y.

4. Define a state vector, X , having for elements the 
system variables and their first derivative.

5. Determine 
6. Determine F and G, in manner that

7. Determine H and J, in manner that 

X&

GuFXX +=&
JuHXy +=

Ex 2, Clicker Q2.5:Dynamic Model

• Applying Newton’s 
law for translational 
motion yields:

• (a)
• (b)
• (c)
• (d)

xmuxb &&& =+−

xmuxb &&& =+

uxmxb += &&&

xmuxb &&& =−−

Ex 2, Q1:Dynamic 
Model

• Applying Newton’s 
law for translational 
motion yields:

• (c)

(2)
m
ux

m
bx +−= &&&

xmuxb &&& =+−

=>

Example 2, Question 1 (cont’d)
Given:
• The input ( = external 

force applied to the 
system) is denoted by 
u

• The output, denoted by 
y, is the car’s velocity:  

y = v
Assumption:
• The state-vector is 

defined as:

Known: The dynamic 
model

(2)

Required: Rewrite (2) as:
m
ux

m
bx +−= &&&
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⎦
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⎦
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⎣

⎡
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⎦
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⎢
⎣
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Known: The dynamic 
model

(2)

Required: Rewrite (2) as:
m
ux

m
bx +−= &&&

{ { {
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⎦
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I-clicker question 2.6
The top row of the F-

matrix at left is:
(A) 1      1
(B) 1      0
(C) 0      1
(D) 0      0
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Known: The dynamic 
model

(2)

Required: Rewrite (2) as:
m
ux

m
bx +−= &&&

{ { {
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⎦
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⎣

⎡
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I-clicker question 2.7
The bottom row of the F-

matrix at left is:
(A) 1     -1
(B) 1      0
(C) 0     -1
(D) 0      0
(E) 0      1   

Known: The dynamic 
model

(2)

Required: Rewrite (2) as:

m
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m
bx +−= &&&
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I-clicker question 2.8
The H-matrix 
(row vector)  at left is:
(A) 1      1
(B) 1      0
(C) 0      1
(D) 0      0

The output y is 
defined as: 

y = v

xvwith
v
x

X &=⎥
⎦

⎤
⎢
⎣

⎡
=

Example 2 (cont’d)

• By definition:             .  As a result,  

• Expressing the dynamic model: 

as a function of v and u leads to: 

vx =& yx &&& =

(2)

m
uv

m
bv +−=&

m
ux

m
bx +−= &&&

Ex 2, Q1 
(cont’d)

Available equations:

• From the dynamic 
model:

• The output y is 
defined as: 

y = v

• The input is the step 
function u

Equivalent form of 
available eq:

where

Therefore:
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Example 2, Question 1: Dynamic 
Model 

in State-Variable Form
By defining X as: The state-variable form results as:
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Example 2, Question2: Step 
Response using MATLAB?
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Assumptions: m = 1000 kg and  b = 50 N.sec/m.
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Ex 2, Q2: Step Response with 
MATLAB?

• The step function in MATLAB calculates the 
time response of a linear system to a unit step 
input.

• In the problem at hand, the input u is a step 
function of amplitude 500 N:

u = 500 * unity step function.

• Because the system is linear (                          ):
G * u = (500 * G) * unity step function

G * Step 0 to 500 N 500*G * Step 0 to 1 N

GuFXX +=&

MATLAB Statements
F = [0   1;0  -0.05];
G = [0;0.001];
H = [0   1];
J = 0;
sys = ss(F, 500*G, H, J);

t = 0:0.2:100;
y = step(sys,t);
plot (t,y)

% defines state variable 
matrices

% defines system by its state-
space matrices

% setup time vector ( dt = 
0.2 sec)

% computes the response  to 
a 
unity step response 

% plots output (i.e., step 
response)

Response of the car velocity to a 
step input u of amplitude 500 N


