MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 460: High School Mentoring for Engineering Design (3 credit): Elective Course

Course Description (2008-2010 Catalog):

Students help high school teams design robots for the FIRST robotics competition. Weekly meetings discuss: mentoring, design, robotics, organizational skills, and teamwork. Must arrange transport to assigned local high school. Class begins with the international FIRST Kick-off meeting usually scheduled for the first Saturday after New Year's Day.

Prerequisite Course: Junior Standing

Prerequisite by Topic:

Junior Standing •

Textbook: N/A

Other Reference Material: N/A

Course Coordinator: Brendan O'Toole, Associate Professor

Course learning outcomes:

- (a) Understand engineering design and fabrication issues related to robotics including: statics, machine design, materials, power systems, control systems
- (b) Appreciate importance of time management and decision making in pressure situations with limited time and information
- (c) Learn about individual and team dynamics while mentoring young high school students
- (d) Learn about the realities of obtaining parts from suppliers or making parts in the machine shop in a short time-frame
- (e) Learn to present problems clearly and succinctly in weekly group design meetings.

Relationship of Course to Mechanical Engineering Program Educational Outcomes:

Goal 1:						Goal 2:				Goal 3:			
Provide mechanical engineering graduates with technical capabilities.					Prepare the mechanical engineering graduates to have effective workplace skills.				Instilling a sense of responsibility as a professional member of society.				
1.a	1.b	1.c	1.d	1.e	2.a	2.b	2.c	2.d	3.a	3. b	3.c	3.d	
Н	Н	Н	Μ	Μ	Н	Μ	H	Μ	L	L	Μ	Μ	
			(M)edium (H)igh										

(L)ow(M)edium (H)igh

Topics Covered:

- 1. Mentoring Guidelines for High School Design
- 2. Materials and Structures
- 3. Power Supply Systems
- 4. Control Systems
- 5. Time Management and Scheduling
- 6. Parts Suppliers and fabrication
- 7. Presentation of design projects

Laboratory Projects: This is a group project class focused on the design and fabrication of a robotic system that has autonomous and tele-operated control segments.

Class/Laboratory Schedule: 170 minutes lecture one session per week

Assessment of Student Progress toward Course Objectives

Weekly Progress reports, Written Final Report, Oral Final Presentation

Class/Laboratory Schedule: F 10:00 – 12:50 PM (Spring Semester)

Contribution of Course for meeting Professional Component:

(a) Mathematics and basic sciences:	0 credit
(b) Engineering Topics (Design/Science):	3 credit
(c) General Education:	0 credit
(d) Others:	0 credits

Prepared By:

Brendan O'Toole

October 12, 2009

Date: