MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 446: Composite Materials (3 credit): Elective Course

Course Description (2008-2010 Catalog):

Overview of matrix and fiber systems, processing techniques, anisotropic elasticity, unidirectional lamina, multidirectional laminate theory, failure theories, and design of composite structures.

Prerequisite Course: ME 302, MATH 431

Prerequisite by Topic:

- Mechanics of Materials
- Differential Equations

Textbook: "Fiber Reinforced Composites: Materials, Manufacturing, and Design", P.K. Mallick, 3rd Edition, CRC Press, 2007, ISBN 9780849342059

Other Reference Material: N/A

Course Coordinator: Brendan O'Toole, Associate Professor

Course learning outcomes:

- (a) Identify the materials used in modern composite materials and their important properties
- (b) Understand how the different manufacturing methods affect design parameters such as strength and stiffness
- (c) Use micromechanics to predict lamina properties
- (d) Use laminate analysis to predict laminated structural response

Relationship of Course to Mechanical Engineering Program Educational Outcomes:

Goal 1: Provide mechanical engineering graduates with technical capabilities.					Goal 2: Prepare the mechanical engineering graduates to have effective workplace skills.				Goal 3: Instilling a sense of responsibility as a professional member of society.			
1.a	1.b	1.c	1.d	1.e	2.a	2.b	2.c	2.d	3.a	3.b	3.c	3.d
Н	L	Μ	L	Н	L	L	Η	Μ	L			L

(L)ow (M)edium (H)igh

Topics Covered:

- 1. Composite Applications
- 2. Fiber and Matrix Properties
- 3. Fiber Reinforced lamina Properties
- 4. Laminate Analysis
- 5. Software for Lamina and Laminate Analysis
- 6. Overview of Mechanical Properties of Composites
- 7. Manufacturing Methods for Composites
- 8. Failure Predictions
- 9. Design
- 10. Special Topics (Varies by semester)

Laboratory Projects: This is a lecture course but I try to schedule informal laminate fabrication exercises related to on-going research or design projects.

Class/Laboratory Schedule: 170 minutes lecture one session per week (sometimes it is taught in twice per week format)

Assessment of Student Progress toward Course Objectives

Six quizzes, Homework assignments, a group design project

Class/Laboratory Schedule: F 10:00 – 12:50 AM (Spring Semester)

Contribution of Course for meeting Professional Component:

(a)	Mathematics and basic sciences:	0 credit
(b)	Engineering Topics (Design/Science):	3 credit
(c)	General Education:	0 credit
(d)	Others:	0 credits

Prepared By:

Date:

Brendan O'Toole

October 12, 2009