MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 421L: Automatic Controls Laboratory (1 credit): Required Course

Course Description (2008-2010 Catalog):

Control system identification. Controller design, experimentation, computer simulation, and analysis of position and speed control systems. Control system performance optimization.

Prerequisite Course: Corequisite ME 421

Prerequisite by Topic: Automatic controls

Textbook: Feedback Control of Dynamic Systems Franklin, Powell et al. Addison-Wesley

Other Reference Material: N/A

Course Coordinator: Georg F. Mauer, Professor

Course learning outcomes:

- Computer Programming. Model and simulate feedback systems in Matlab and VisSim.
- **Controller Design.** Using the theories from the lecture, identify the dynamic system properties of real feedback control plants, design and optimize controllers for these plants, and verify the closed loop system performance.
- Lab Reports. Describe your analysis, design, and experimental results in weekly lab reports, one report per experiment.

Relationship of Course to Mechanical Engineering Program Educational Outcomes:

			Goal 2:				Goal 3:					
Pro	enginee	ring	Prepare the mechanical				Instilling a sense of					
	n technic	engineering graduates to				responsibility as a						
capabilities.					have effective workplace				professional member of			
					skills.				society.			
1.a	1.b	1.c	1.e	1.f	2.a	2.b	2.c	2.d	3.a	3.b	3.c	3.d
H	H		H	H	H		H	M	M			

(L)ow (M)edium (H)igh

Topics Covered:

- 1. Introduction to control system simulations (3 labs)
- 2. Dynamic systems step response (DC Motor)(2 labs)
- 3. Time domain feedback system design (four different experiments: DC Motor fluid flow system, fluid level, pneumatic pressure) (4 labs)
- 4. Linear Series compensator design, DC Motor and fluid flow systems (2 labs)
- 5. System Identification: Experimental frequency response and step response methods

Laboratory Projects: yes

Class/Laboratory Schedule: class meets 1 time per week, 180 minutes per session

Assessment of Student Progress toward Course Objectives

Weekly Lab reports

Class/Laboratory Schedule: multiple lab sections (Fall Semester)

Contribution of Course for meeting Professional Component:

(a) Mathematics and basic sciences: 0 credit

(b) Engineering Topics (Design/Science):1 credit(c) General Education:0 credit(d) Others:0 credits

Prepared By: Date:

Georg Mauer September 11, 2009