MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 421: Automatic Controls (3 credit): Required Course

Course Description (2008-2010 Catalog):

Introduction to feedback system concepts; mathematical modeling of mechanical, hydraulic, electromechanical and servo systems; feedback system characteristics and performance; stability; design and compensation of control systems. **Prerequisite Course:** EE 290, and ME 330

Prerequisite by Topic:

- 1. Electric Circuits
- 2. Mathematics for Engineers.
- 3. Analysis of Dynamic Systems

Textbook: "Feedback Control of Dynamic Systems," Franklin, Powell et al. Addison-Wesley

Other Reference Material: N/A

Course Coordinator: Georg F. Mauer, Professor

Course learning outcomes:

- 1. Develop an understanding of the fundamental principles governing the feedback control of dynamic systems.
- 2. Develop the ability to design feedback control systems to specified performance objectives, and predict the behavior of these systems using mathematical models.
- 3. Practice numerical and symbolic analysis of feedback system dynamics using state of the art software tools.

Relationship of Course to Mechanical Engineering Program Educational Outcomes:

Goal1:						Goal 2:				Goal 3:			
Provide mechanical engineering					Prepare the mechanical				Instilling a sense of				
graduates with technical					engineering graduates to				responsibility as a				
capabilities.					have effective workplace				professional member of				
					skills.				society.				
1.a	1.b	1.c	1.e	1.f	2.a	2.b	2.c	2.d	3. a	3.b	3. c	3.d	
Н	Η	Η	Η	Η	Η			L	Μ				
(T)													

(L)ow (M)edium (H)igh

Topics Covered:

- 1. Introduction to control systems. (2 classes)
- 2. 2. Analytical modeling of mechanical and electromechanical systems, revision of Laplace transforms. (6 classes)
- 3. Sensitivity, errors, controller design, performance. (4 classes)
- 4. Stability: Routh-Hurwitz and root locus methods, R.L. control loop design. (4 classes)
- 5. Frequency response methods, polar and bode plots. (4 classes)
- 6. Nyquist criterion and controller design. (3 classes)
- 7. Time domain methods (state variable analysis and state compensator design). (1 class)
- 8. Control system design and compensation, case studies. (1 class)
- 9. Tests. (3 classes)

Laboratory Projects: None

Class/Laboratory Schedule: 75 minutes lecture, two sessions per week

Assessment of Student Progress toward Course Objectives

Three written exams, home-works, one project, 5 design project reports (distinct and individualized assignments for each student), and final exam

Class/Laboratory Schedule: MW 8:30-10:50 AM (Fall Semester)

Contribution of Course for meeting Professional Component:

(a) Mathematics and basic sciences:	0 credit
(b) Engineering Topics (Design/Science):	3 credit
(c) General Education:	0 credit
(d) Others:	0 credits

Prepared By:

Georg Mauer

Date:

September 10, 2009