MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 415: Design of Thermal Systems (3 credits): Elective Course

Course Description (2008-2010 Catalog):

Design of thermal systems and subsystems, especially as they relate to current and new means of energy utilization and power generation; computer simulation and optimization of thermal systems based on performance and economic constraints.

Prerequisite Course: EGG 307, ME 311, 314, 380

Prerequisite by Topic:

• Engineering Economics

• Engineering Thermodynamics

• Engineering Heat Transfer

• Fluid Mechanics

Textbook: Design Analysis of Thermal Systems, R. Boehm, J. Wiley

Other Reference Material: N/A

Course Coordinator: Robert Boehm, Distinguished Professor

Course Objectives:

- (a) Review pertinent prerequisite topics emphasizing design aspects
- (b) Emphasize applications of various devices and software used in thermal systems design
- (c) Working in a group, perform a major open-ended design project that uses costing as a key element
- (d) Give oral and written reports on a regular basis

Relationship of Course to Mechanical Engineering Program Educational Outcomes:

	Goal 2:				Goal 3:							
Provide mechanical engineering					Prepare the mechanical				Instilling a sense of			
graduates with technical					engineering graduates to				responsibility as a			
capabilities.					have effective workplace				professional member of			
					skills.				society.			
1.a	1.b	1.c	1.d	1.e	2.a	2.b	2.c	2.d	3.a	3.b	3.c	3.d
H		H	M	H	H	M	H	M	M		M	L

(L)ow (M)edium (H)igh

Topics Covered:

- 1. Selection of fluid flow equipment in practical designs
- 2. Heat exchange options in design
- 3. Fitting of physical data and solving equations numerically
- 4. Economic evaluation techniques
- 5. Preliminary cost estimation
- 6. Availability analysis
- 7. Introduction to optimization techniques
- 8. Outline of some commercial software
- 9. Major group design project

(a) Mathematics and basic sciences:

Laboratory Projects: None

Assessment of Student Progress toward Course Objectives

Regular oral reports, midterm exam, final group project

Class/Laboratory Schedule: MW 4:00-5:15 (Spring Semester)

Contribution of Course for meeting Professional Component:

(b)	Engineering Topics (Design/Science):	3 credits
(c)	General Education:	0 credits
(d)	Others:	0 credits

0 credits

Prepared By: Date:

Robert Boehm September 24, 2009