MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 400: Intermediate Fluid Mechanics (3 credits): Elective Course

Course Description (2008-2010 Catalog):

Basic laws and equations of fluid flow; very viscous flow solutions; boundary layer flows; potential flows; wave phenomena; transport phenomena; turbulence.

Prerequisite Course: ME 380

Prerequisite by Topic:

• Fluid dynamics for mechanical engineers

Textbooks: (1) David C. Wilcox, "*Element of Fluid Mechanics*," 1st Edition, 2005, DCW Industries, Inc. (2) Ronald L. Paton, "*Incompressible Flow*," 3rd Edition, 2005, John Wiley & Sons, Inc.

Other Reference Materials: (1) Frank M. White, "*Fluid Mechanics*," 6th Edition, 2008, McGraw-Hill Companies, Inc. (2) I.G. Currie, "*Fundamental Mechanics of Fluids*," 3rd Edition, Marcel Dekker, Inc., 2003. (3) Frank M. White, "*Viscous Fluid Flow*," 3rd ed., New York: McGraw-Hill, 2006. (4) Van Dyke, "*An Album of Fluid Motion*," Stanford, Calif.: Parabolic Press, 1982. (5) M. Samimy, K. S. Breuer, L. G. Leal, and P. H. Steen, "*A Gallery of Fluid Motion*," Cambridge University Press, 2003. (6) Hermann Schlichting, "*Boundary-Layer Theory*," 8th Edition, Springer-Verlag, 1999. (7) R. B. Bird, W. E. Stewart, and E. N. Lightfoot, "*Transport Phenomena*," 2nd Edition, John Wiley & Sons, Inc., 2002. (8) David J. Acheson, "*Elementary Fluid Dynamics*," New York: Oxford University Press, 1990. (9) Rutherford Aris, "*Vectors, Tensors, and the Basic Equation of Fluid Mechanics*," Courier Dover Publications, 1989. (10) D. J. J. Tritton, "*Physical Fluid Dynamics*," 2nd ed., Oxford University Press, 1988.

Course Coordinator: Yi-Tung Chen, Professor

Course learning outcomes:

- (a) Lead students toward a clear understanding and firm grasp of the fundamentals of the subject with a balance between physics, mathematics, and applications of fluid mechanics.
- (b) Learn basic vector and tensor calculus to apply into fluid mechanics.
- (c) Understand the elementary motions of a fluid particle (kinematics) of translation, solid-body rotation, and deformations.
- (d) Derive two major independent dynamical laws in continuum mechanics: the continuity and momentum equations.
- (e) Learn the Kelvin's theorem that circulation about any closed path moving with the fluid is a constant.
- (f) Determine rotational or irrotational flows using vorticity equation.
- (g) Understand incompressible inviscid flow and Euler's equations in streamline coordinates and apply the Bernoulli equation between any two points on a streamline.

- (h) Learn stream function and velocity potential for two-dimensional, irrotational, incompressible flow. Then apply elementary plane flows to superposition plane flows.
- (i) Distinguish Newtonian and non-Newtonian fluids and derive the Navier-Stoke equations from the equation of motions.
- (j) Learn a few types of exact solutions of viscous flows of incompressible fluid flow such as Couette (wall-driven) steady flows, Poiseuille (pressure-driven) steady duct flows, unsteady duct flows, unsteady flows with moving boundaries, duct flows with suction and injection, and similarity solutions.
- (k) Understand the fundamentals of computational fluid dynamics (CFD) and able to apply the CFD solution procedure to simple nonlinear equations and assigned class project.
- (1) Learn and solve flows at low-Reynolds-number (i.e. creeping flows or Stokes flows) for the applications of an oil-lubricated bearing, the flow of groundwater, oil, or natural gas through porous rock, or leading edge of a flat plate aligned with free stream etc. in the future.
- (m) Understand important phenomena of boundary layers and how to calculate boundary layer thickness and apply it to Blasius flow over a flat plate.
- (n) Learn the basics of hydrodynamics stability, turbulence, flow separation, and wave phenomena.
- (o) Model the variety of phenomena that occur in real fluid situations.

Relationship of Course to Mechanical Engineering Program Educational Outcomes:

Goal1: Provide mechanical engineering graduates with technical capabilities.						Goal 2: Prepare the mechanical engineering graduates to have effective workplace				Goal 3: Instilling a sense of responsibility as a professional member of			
cupuomnes.						skills.				society.			
1.a	1.b	1.c	1.d	1.e	2.a	2.b	2.c	2.d	3. a	3.b	3.c	3.d	
Η		Μ	Η	Η	Η			Μ			L	Η	
	(])			• / • •	`• 1								

(L)ow (M)edium (H)igh

Topics Covered:

- 1. Introduction of scalar, vector, and tensors
- 2. Basic conservation laws and transport phenomena
- 3. Kinematics of fluid flow
- 4. Kelvin's theorem
- 5. Bernoulli equation, Crocco's equation, and vorticity equation
- 6. Two-dimensional potential flows
- 7. Viscous flows of incompressible fluid flow
- 8. Exaction solutions
- 9. Computational fluid dynamics (CFD)
- 10. Low-Reynolds-number solutions
- 11. Boundary layers
- 12. Hydrodynamics stability, turbulence, and flow separation
- 13. Wave phenomena

Laboratory Projects: None

Class/Laboratory Schedule: 75 minutes lecture two sessions per week

Assessment of Student Progress toward Course Objectives

Homework assignments, one CFD project, one written midterm exams, and final exam

Class/Laboratory Schedule: TR 4:00-5:15 PM (Fall Semester)

Contribution of Course for meeting Professional Component:

(a) Mathematics and basic sciences:	0 credit
(b) Engineering Topics (Design/Science):	3 credit
(c) General Education:	0 credit
(d) Others:	0 credits

Prepared By:

Yi-Tung Chen

Date:

September 28, 2009