MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 380: Fluid Dynamics for Mechanical Engineers (3 credits): Required Course

Course Description (2008-2010 Catalog):

Introduction to fluid properties, statics, and fluid dynamics. Development of the Navier-Stokes equations for the study of flow in closed conduits, external flows, boundary layers, compressible flows, potential flows, and turbomachinery.

Prerequisite Course: ME 242, MATH 283, PHYS 182-182L

Prerequisite by Topic:

- Dynamics
- Calculus III
- Physics for Scientists and Engineers III
- Physics for Scientists and Engineers Lab III

Textbook: Robert W. Fox, Philip J. Pritchard, Alan T. McDonald, "Introduction to Fluid Mechanics," 7th Ed., John Wiley & Sons, Inc. 2009

Other Reference Material: N/A

Course Coordinator: Yi-Tung Chen, Professor

Course learning outcomes:

- (a) Lead students toward a clear understanding and firm grasp of the basic principles of fluid mechanics.
- (b) Apply the governing equations in integral form for a control volume and differential analysis to a variety of fluid problems, including those they have not encountered previously.
- (c) Model the variety of phenomena that occur in real fluid situations.
- (d) Encourage creative thinking and development of a deeper understanding and intuitive feel for fluid mechanics.
- (e) Understand motion of a fluid particle (kinematics) such as translation, rotation, angular deformation, and linear deformation.
- (f) Understand incompressible inviscid flow and Euler's equations in streamline coordinates and apply the Bernoulli equation between any two points on a streamline.
- (g) Apply dimensional analysis in determining the relevant scales in a given problem, correlating experimental data and extrapolating measurements on small-scale models to large-scale objects.
- (h) Calculate the entrance length for laminar pipe flow and understand fully developed laminar flow between infinite parallel plates, in a pipe, shear stress distribution, turbulent velocity profiles in fully developed pipe flow, and velocity potential.
- (i) Calculate the total head loss as the sum of major losses and minor losses and apply the Moody diagram to find friction factor based Reynolds number and relative roughness.

- (j) Understand flow measurement from different flow meter types such orifice, flow nozzle, and Venturi.
- (k) Understand the concept of boundary layer and calculate the disturbance thickness, displacement thickness, and momentum thickness.
- (1) Understand the drag and lift coefficients and use it to calculate drag and lift forces on a body.
- (m) Understand propagation of sound waves.
- (n) Understand basic machines that add energy to a fluid by performing work on it.

Relationship of Course to Mechanical Engineering Program Educational Outcomes:

Goal1:					Goal 2:				Goal 3:			
Provide mechanical engineering					Prepare the mechanical				Instilling a sense of			
graduates with technical					engineering graduates to				responsibility as a			
capabilities.					have effective workplace				professional member of			
					skills.				society.			
1.a	1.b	1.c	1.d	1.e	2.a	2.b	2.c	2.d	3. a	3.b	3. c	3.d
Η		Μ	Η	Η	L			Μ			L	Η
(T)												

(L)ow (M)edium (H)igh

Topics Covered:

- 1. Velocity and stress fields, viscosity, surface tension, fluid motions
- 2. Newtonian and non-Newtonian fluids
- 3. Manometer, hydrostatic forces on a plan or curved submerged surface
- 4. Basic equations in integral form for a control volume (conservation of mass and momentum)
- 5. Introduction to differential analysis of fluid motion (stream function and fluid kinematics)
- 6. Continuity and Navier-Stokes equations
- 7. Incompressible inviscid flow (Euler and Bernoulli equations; energy and hydraulic grade lines)
- 8. Dimensional analysis and similitude (Buckingham PI theorem)
- 9. Internal incompressible viscous flow (fully developed laminar flow; flow in pipes and ducts; flow measurement)
- 10. External incompressible viscous flow (Boundary-layer, drag and lift)
- 11. Basic introduction of compressible flow
- 12. Basic introduction of turbomachinery

Laboratory Projects: None

Class/Laboratory Schedule: 75 minutes lecture two sessions per week

Assessment of Student Progress toward Course Objectives

Homework assignment on each week, two written midterm exams, and final exam

Class/Laboratory Schedule: TTh 8:30-9:45 AM (Fall Semester)

Contribution of Course for meeting Professional Component:

(a)	Mathematics and basic sciences:	0 credit
(b)	Engineering Topics (Design/Science):	3 credit
(c)	General Education:	0 credit
(d)	Others:	0 credits

Prepared By:

Yi-Tung Chen

Date:

September 24, 2009