MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 330: Analysis of Dynamic Systems (2 credit): Required Course

Course Description (2008-2010 Catalog):

Mathematical modeling and analysis of dynamic systems with mechanical, electrical, and fluid elements. Topics include: time and frequency domain solution, state space modeling and solutions, linearization, numerical solution using Matlab.

Prerequisite Course: MATH 431, ME 242

Prerequisite by Topic:

- Dynamics
- Differential equation

Textbook: Modeling & Analysis of Dynamic System by Close et al, 3rd ed., Wiley

Other Reference Material: N/A

Course Coordinator: Woosoon Yim, Professor

Course learning outcomes:

- (a) Model the dynamic system in either input/output equation or state space representation.
- (b) Linearize the nonlinear elements in the dynamic system about operating conditions.
- (c) Understand the transient and steady state response of dynamic systems and the effects of the system parameters changes on the responses.
- (d) Simulate the dynamic response using Matlab and Simulink.

Relationship of Course to Mechanical Engineering Program Outcomes:

Educational Objective1: Provide mechanical engineering graduates with technical capabilities.					Educational Objective 2: Prepare the mechanical engineering graduates to have effective workplace skills.				Edu	Educational Objective 3: Instilling a sense of responsibility as a professional member of society.			
1.a	1.b	1.c	1.d	1.e	2.a	2.b	2.c	2.d	3.a	3.b	3.c	3.d	
Н		L	Н	Η	L			Μ					

(L)ow (M)edium (H)igh

Topics Covered:

- 1. Laplace transformation
- 2. Dynamic system modeling (mechanical, electrical, fluid)
- 3. Linearization
- 4. System response (transient)
- 5. System response (steady state)
- 6. Frequency response of dynamic system
- 7. I/O equation and transfer function
- 8. State space representation of dynamic system and responses
- 9. Simulation of dynamic system using Matlab and Simulink

Laboratory Projects: None

Class/Laboratory Schedule: 50 minutes lecture two sessions per week

Assessment of Student Progress toward Course Objectives

Two written exams, home-works, one project, and final exam

Class/Laboratory Schedule: MW 10:00-10:50 AM (Spring Semester)

Contribution of Course for meeting Professional Component:

(a) Mathematics and basic sciences:	0 credit
(b) Engineering Topics (Design/Science):	2 credit
(c) General Education:	0 credit
(d) Others:	0 credits

Prepared By:

Woosoon Yim

September 1, 2009

Date: