MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 319/319L: Introduction to Programming for Mechanical Engineers (2 credit)

Course Description (2008-2010 Catalog):

Introduction to computer languages and computer hardware, MATLAB programming environment, Number Systems, MATLAB data types, MATLAB graphics, Functions, Inputs / Outputs, Char variable type, and text processing function library, Plotting functions, Reading a writing data files, Case Studies using different Matlab Toolboxes.

Prerequisite Course: ME100, ME100L, Math 283

Prerequisite (Corequisite) by Topic:

- Introduction to Mechanical Engineering
- Calculus III

Textbook:

MATLAB, AN INTRODUCTION WITH APPLICATIONS, Amos Gilat, WILEY, 3rd Edition. ISBN 978-0-470-10877-2

Other Reference Material: N/A

Course Coordinator: Woosoon Yim, Professor

Course learning outcomes:

- 1. Perform mathematical operations using arrays and matrices in MATLAB.
- 2. Create script and user defined function files.
- 3. Handle data using MATLAB by importing/exporting them from/to different formats (.mat, .doc, .xls).
- 4. Generate two dimensional plots and perform the essential plotting commands.
- Write programming codes with conditional statements and loops to solve most engineering problems.
- 6. Build and simulate basic SIMULINK models.

Relationship of Course to Mechanical Engineering Program Educational Outcomes:

Goal1:						Goal 2:				Goal 3:			
Pro	engine	ering	Pı	Prepare the mechanical				Instilling a sense of					
graduates with technical						engineering graduates to				responsibility as a			
capabilities.						have effective workplace				professional member of			
						skills.				society.			
1.a	1.b	1.c	1.d	1.e	2.a	2.b	2.c	2.d	3.a	3.b	3.c	3.d	
H		L	H	H	M		L						

(L)ow (M)edium (H)igh

Topics Covered:

- 1. Space description and homogeneous transformation.
- 2. Robotic Fundamentals
 - Kinematics (DH notations)
 - Manipulator Jacobian
 - Forces, Moments dynamics
 - Feedback control Techniques
- 3. Applications and Advanced Topics
 - Robot compliance
 - Operational space
 - Force control

Laboratory Projects: None

Assessment of Student Progress toward Course Objectives

Two mid-term exams, Semester Project, final exam

Class/Laboratory Schedule: 75 minutes lecture two sessions per week (Bi-annual)

Contribution of Course for meeting Professional Component:

(a) Mathematics and basic sciences:

(b) Engineering Topics (Design/Science):
(c) General Education:
(d) Others:
0 credit
0 credits

Person who prepared this description:

Woosoon Yim, Professor October 12, 2009