MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 301: Structure and Properties of Solids (3 credit): Required Course

Course Description (2008-2010 Catalog):

Electronics structure and bonding in solids, crystalline and noncrystalline solids, defects and their relation to properties, phase transformations, diffusion in solids, and corrosion.

Prerequisite Course: CHEM 121, PHYS 182

Prerequisite by Topic:

- General Chemistry I Fundamental principles of chemistry and their correlation with the properties of the elements.
- Physics for Scientists and Engineers III Lectures in fluid mechanics, thermodynamics, optics, sound, temperature, thermometry, heat, gases, intermolecular forces, kinetic theory, entropy, light.

Textbook: Foundations of Materials Science and Engineering, Smith and Hashemi, 4th ed., McGraw Hill

Other Reference Material: N/A

Course Coordinator: Daniel Cook, Assistant Professor

Course learning outcomes:

- (a) Describe the electronic structure of atoms, the bonding types in the three main material groups, and how this effects their macroscopic properties such as strength, ductility, thermal and electrical conductivity.
- (b) Describe the major crystalline systems in metals and ceramics.
- (c) Calculate the free energy of formation of nuclei from homogeneous and heterogeneous solidification.
- (d) Identify and describe the various crystalline imperfections commonly found in solids.
- (e) Determine the diffusion properties of atoms in a solid solution due to concentration and temperature gradients.
- (f) Identify common metallic failure modes such as ductile, brittle, fatigue, creep, and corrosion failure.
- (g) Use phase diagrams to determine the microstructure of metals and ceramics.
- (h) Select or design appropriate processing methods to produce materials with specified combinations of properties.

Relationship of Course to Mechanical Engineering Program Educational Outcomes:

1.a	1.b	1.c	1.d	1.e	2.a	2.b	2.0	2.d	3.a		society.	3.d
1.a H	1.b (L)o	1.c L	1.d	1.e	2.a (H)igh	2.b	2.c	2.d M	3. a	3.b M	3.c M	3.d

Topics Covered:

- 1. Atomic Structure and Bonding
- 2. Crystal and Amorphous Structure in Materials
- 3. Solidification and Crystalline Imperfections
- 4. Thermally Activated Processes and Diffusion in Solids
- 5. Mechanical Properties of Metals
- 6. Phase Diagrams
- 7. Engineering Alloys
- 8. Polymeric Materials
- 9. Ceramics
- 10. Corrosion

Laboratory Projects: None

Class/Laboratory Schedule: 75 minutes lecture two sessions per week

Assessment of Student Progress toward Course Objectives

Two written exams, home-works, quizzes, and final exam

Class/Laboratory Schedule: MW 1:00-2:15 PM (Spring Semester)

Contribution of Course for meeting Professional Component:

(a) Mathematics and basic sciences:	0 credit		
(b) Engineering Topics (Design/Science):	2 credit		
(c) General Education:	0 credit		
(d) Others:	0 credits		

Prepared By:

Date:

Daniel Cook

October 11, 2009