MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 242: Dynamics (3 credit): Required Course

Course Description (2008-2010 Catalog):

Problem course in engineering dynamics, emphasizing the engineering applications of rigid body motion and mechanisms. Kinematics, energy, momentum, and impulse momentum methods utilized. **Prerequisite Course:** CEE 241, PHYS 180-180L, and MATH 182

Prerequisite by Topic:

- Statics
- Physics
- Calculus

Textbook: "Engineering Mechanics, Dynamics " 6th Edition, by Meriam and Kraige, J. Wiley

Other Reference Material: N/A

Course Coordinator: Georg F. Mauer, Professor

Course learning outcomes:

- 1. Develop an understanding of the fundamental principles governing the motion of objects and the interaction between forces acting on objects and their ensuing motion.
- 2. Develop the ability to formulate realistic dynamic models of physical systems and to analyze and predict the behavior of these systems using the established models.
- 3. Practice numerical and symbolic analysis of kinematics and dynamics using state of the art software tools.

Relationship of Course to Mechanical Engineering Program Educational Outcomes:

Goal1:					Goal 2:				Goal 3:			
Provide mechanical engineering					Prepare the mechanical				Instilling a sense of			
graduates with technical					engineering graduates to				responsibility as a			
capabilities.					have effective workplace				professional member of			
					skills.				society.			
1.a	1.c	1.d	1.e	1.f	2.a	2.b	2.c	2.d	3. a	3.b	3.c	3.d
Η	Μ		Н	Η	L			Μ	Μ			
(L)ow			(M)edium (H)igh									

Topics Covered:

- 1. Kinematics of particles. (6 classes)
- 2. Kinetics of particles including the application of Newton's second law. (4 classes)
- 3. Energy and momentum methods for the kinetics of particles (4 classes)
- 4. Systems of particles (2 classes)
- 5. Kinematics of rigid bodies. (5 classes)
- 6. Plane motion of rigid bodies: forces and accelerations. (4 classes)
- 7. Plane motion of rigid bodies: energy and momentum methods. (2 classes)
- 8. Exams (3 classes)

Laboratory Projects: None

Class/Laboratory Schedule: 75 minutes lecture two sessions per week

Assessment of Student Progress toward Course Objectives

Three written exams, home-works, and final exam

Class/Laboratory Schedule: MW 1:00-2:15 PM (Spring and Fall Semester)

Contribution of Course for meeting Professional Component:

(a) Mathematics and basic sciences:	0 credit
(b) Engineering Topics (Design/Science):	3 credit
(c) General Education:	0 credit
(d) Others:	0 credits

Prepared By:

Georg Mauer

Date:

September 10, 2009