MECHANICAL ENGINEERING PROGRAM

ABET COURSE SYLLABUS

ME 100: Introduction to Mechanical and Aerospace Engineering (2 credit): Required Course

Course Description (2008-2010 Catalog):

Introduction to mechanical and aerospace engineering profession. Engineering problems and calculations and creativity in the design process. Ethics and professionalism in engineering design. Laboratory and machine shop demonstrations.

Prerequisite Course: Mechanical Engineering major

Prerequisite by Topic:

1. College Algebra.

- 2. Trigonometry.
- 3. Elementary chemistry.

Textbook: A.R. Eide, R.D. Jenison, L.H. Mashaw, L.L. Northup, *Introduction to Engineering Design and Problem Solving*, 4th Edition, McGraw Hill

Other Reference Material: N/A

Course Coordinator: Georg F. Mauer, Professor

Course learning outcomes:

• **Basic engineering calculations**. Convert quantities from one set of units to another such as SI and US Customary and apply basic algebraic and geometrical concepts to solve simple technical problems.

• Engineering Method. Approach a technical problem employing the basic steps of the engineering method starting with an understanding of the problem and ending with a verification and check of results.

• Engineering Design. Be aware of the value of the engineering design process to develop effective engineering systems to meet a desired need. Build, test, and evaluate completed designs in the laboratory.

• **Overview of Disciplines with Mechanical Engineering.** Be knowledgeable of the many facets of mechanical engineering such as fluids, vibrations, controls, kinematics, etc as a result of especially designed seminars by various expert members of the faculty and laboratory experiences.

Relationship of Course to Mechanical Engineering Program Educational Outcomes:

Goal1:					Goal 2:				Goal 3:			
Provide mechanical engineering					Prepare the mechanical				Instilling a sense of			
graduates with technical					engineering graduates to				responsibility as a			
capabilities.					have effective				professional member of			
_					workplace skills.				society.			
1.a	1.c	1.d	1.e	1.f	2.a	2.b	2.c	2.d	3. a	3. b	3.c	3.d
Η	Μ	Η	Η	Η	Η		Η	Μ	Η		Μ	
(L)ow			(M)edium		(H)igh							

Topics Covered:

- 1. Introduction and Engineering History. 4 classes.
- 2. The design process 6 classes.
- 3. Steps in the design process: Problem solving, problem definition, solution idea generation, refinement and analysis, decision and implementation, case studies. 2 classes.
- 4. Engineering analysis. 3 classes.
- 5. Mathematical Modeling and Engineering Software Applications. 3 classes.
- 6. Dimensions and Units. 2 classes
- 7. Team Design Reports and Oral Presentations. 4 classes
- 8. Ethics. 2 classes
- 9. Exams. 2 classes

Laboratory Projects: None

Class/Laboratory Schedule: 50 minutes lecture two sessions per week

Assessment of Student Progress toward Course Objectives

Two written exams, home-works, Team Project report and Presentation of ME 100 Lab Design, and final exam

Class/Laboratory Schedule: MW 1:00-1:50 PM (Spring and Fall Semester)

Contribution of Course for meeting Professional Component:

(a) Mathematics and basic sciences:	0 credit
(b) Engineering Topics (Design/Science):	2 credit
(c) General Education:	0 credit
(d) Others:	0 credits

Prepared By:

Date:

Georg Mauer

September 10, 2009